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Figure 1: RotoWrist is a wristband that can track 2-DoF continuous relative angle of the wrist with respect to the arm. Left: A
user playing Beat Saber with anOculus Rift-S VR system. The left hand orientation is estimated using RotoWrist while a Rift-S
controller tracks the right hand. Middle: Visualization of wrist angle tracking in a Unity test application. Right: RotoWrist
tracking relies on eight time of flight IR modules embedded in a wristband.

ABSTRACT
We introduce RotoWrist, an infrared (IR) light based solution for
continuously and reliably tracking 2-degree-of-freedom (DoF) rela-
tive angle of the wrist with respect to the forearm using a wristband.
The tracking system consists of eight time-of-flight (ToF) IR light
modules distributed around a wristband. We developed a compu-
tationally simple tracking approach to reconstruct the orientation
of the wrist without any runtime training, ensuring user indepen-
dence. An evaluation study demonstrated that RotoWrist achieves
a cross-user median tracking error of 5.9° in flexion/extension and
6.8° in radial and ulnar deviation with no calibration required as
measured with optical ground truth. We further demonstrate the
performance of RotoWrist for a pointing task and compare it against
ground truth tracking.
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1 INTRODUCTION
Wearable devices have grown immensely popular and are enabling
computing in many areas of people’s lives across a wide range
of scenarios. Tracking the movement of the hand has long been
important in developing natural and intuitive interaction paradigms
for computing [32]. Specifically, the dexterity of human wrist joints
typically enables a broad range of motion [23], making the wrist a
promising modality to drive input for wearable computing.

Existing hand tracking methods most often rely on computer
vision [5, 24, 27, 29, 35, 39] with cameras in the environment or
on a head-mounted display (HMD). These approaches yield high
accuracy, but require line-of-sight and in some cases, infrastructure
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Figure 2: Diagram illustrating different wrist motions. Ro-
toWrist continuously captures wrist flexion/extension and
radial/ulnar deviation. It does not attempt to capture prona-
tion/supination.

support, that limit mobility and versatility. The growing demand for
computing in ubiquitous contexts motivates researchers to consider
wrist-worn devices (e.g., smartwatches and smart bands), which
have become increasingly mainstream. However, most research
efforts around wristband-based sensing focus on discrete, gesture
based interactions [6, 8, 9, 13, 14, 36, 43, 45]. Although discrete
gestures are useful, they are just one part of the interaction language
needed for mobile wearable computing. For common tasks like
pointing at targets, drawing, sliding, or swipe-based text input,
an input device that supports continuous tracking will be most
appropriate.

In this work, we present RotoWrist, an infrared (IR) light-based
device that performs continuous 2-degree-of-freedom (DoF) wrist
tracking from the wristband. RotoWrist works without requiring
any user training. The RotoWrist system consists of a wristband
that uses eight ToF IR modules to continuously estimate the 2-DoF
angle of the wrist with respect to the forearm in real-time. Each
low-power sensor measures the absolute distance from the hand.
As the user moves their wrist, the relative distance between the
hand and each sensor changes. RotoWrist combines these eight
measurements into a 2-DoF wrist orientation—flexion/extension
and radial/ulnar deviation, as depicted in Figure 2.

Among related work in sensor-based tracking of the wrist, Ro-
toWrist is most similar to WristWhirl[9]. In RotoWrist, we pri-
oritized robustness and accuracy and designed the system from
ground up to support continuous, absolute tracking without any
user calibration. While the WristWhirl system is capable of sensing
continuous wrist motion, it did not investigate tracking perfor-
mance and focused primarily on the accuracy of detecting 8 distinct
gestures. Not only does RotoWrist support real-time continuous
tracking that is benchmarked against a ground truth system, but we
further establish RotoWrist’s ability to operate in a cross-session
and cross-user fashion.

RotoWrist offers a rich input source for a variety of wearable
devices, including smartwatches and HMDs. With RotoWrist, a user

can provide continuous input using their wrist, in eyes-away con-
texts where line-of-sight to a camera might be difficult to maintain.
For example, user might point while keeping their arm motionless
at their side or with their hands beneath a table.

Our primary contributions are:

(1) A simple, low-power hardware architecture consisting of
eight time-of-flight IR light modules embedded in a custom-
built wristband that enables continuous wrist angle tracking.

(2) A tracking algorithm that can reliably estimate 2-DoF orien-
tation of the wrist without user training.

(3) A system characterization and user evaluation demonstrat-
ing tracking accuracy of 5.9° in flexion/extension and 6.8° in
radial/ulnar deviation across users without any calibration,
compared to an optical motion capture system.

(4) A study comparing RotoWrist’s pointing performance to a
high-precision wrist and forearm tracker.

2 RELATEDWORK
Existing hand tracking methods are based on sensors that are either
outside-in (off-body) or inside-out (on-body). Outside-in sensors
with cameras [5, 24, 27, 29, 35, 39] or radio frequency[21, 38] employ
external sensing infrastructure that limits users’ mobility for daily
interaction and making these technologies less suited to mobile
and ubiquitous uses. In comparison, inside-out sensing approaches
provide much better mobility support. Therefore, in the rest of
this section we have focused on inside-out hand tracking and have
split the related work into two main categories: 1) tracking wrist
movement by leveraging the internal anatomy of the wrist and 2)
tracking using the external contours of the hand.

2.1 Inferring wrist angles from internal signals
A number of research projects explored electromyography (EMG)
where electrodes are placed below the elbow to detect hand ges-
tures [16, 31]. EMG systems are complex and require the user to
wear a bulky array of electrodes below the elbow. Although these
systems continuously track user wrist and fingers, they require a
very exhaustive training and/or calibration. Other researchers have
leveraged electrical impedance tomography [45], bio-capacitive
sensing [28, 36], IR tomography [22], acoustic tomography [7, 11]
and more recently ultrasound [14] for discrete hand gesture recog-
nition from a wristband. These methods result in discrete, gesture-
based interactions like detecting a fist vs stretch, directional sweep,
finger pinches, and not continuous tracking. Furthermore, these
systems are often very sensitive to the positioning and slippage of
the device and therefore often require per-session training.

2.2 Inferring wrist angles from external signals
Skin surface deformation due to wrist movement can be detected by
pressure/stretch sensors [6, 15, 34]. Other researchers have lever-
aged ultrasound beam forming [13] and acoustics [19, 25] to rec-
ognize discrete gestures. Other approaches to determining hand
pose on wearable devices employ vision sensors such as a camera
or optical sensor on the inner side of the arm or wrist [9, 18, 41, 44].
Digits [18] used infrared illumination from the wrist to track hand
pose. Opisthenar uses an embedded wrist camera to recognize static
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hand poses [44]. Although this method can enable full hand track-
ing, the form factor and power consumption limits practicality.
FingerTrak use 4 thermal cameras around the wrist to reconstruct
full hand pose though cannot reconstruct relative angle of the wrist
with respect to the forearm and consumes around 3 watts of power
which limits practicality in a mobile setting [12].

WristWhirl [9] is most relevant to RotoWrist. It uses an array
of proximity sensors that can detect gestures with high quality.
Our work advances upon WristWhirl in four significant aspects:
1) RotoWrist investigates and reports real-time angular deviations
from the ground truth. WristWhirl did not investigate tracking per-
formance, focusing primarily on the accuracy of detecting 8 distinct
gestures including 4 directional marks, and 4 free-form shapes. 2)
For angular wrist pose estimation, we establish RotoWrist’s cross-
session and cross-user performance. In contrast, WristWhirl only
reported within-session performance and required the user to cal-
ibrate every session. 3) In addition to raw sensing accuracy, we
further investigate RotoWrist on a pointing task and compare its
performance with ground truth. It’s unclear how well WristWhirl
can be used for pointing tasks. 4) RotoWrist improves upon Wrist-
Whirl’s hardware design by adopting optical ToF sensors which are
robust to different skin tones, lighting conditions, and indoor vs.
outdoor use. WristWhirl’s IR photo diode based approach is prone
to ambient IR noise, lighting changes, and skin tone dependencies
owing to variations in IR light reflection from the skin.

There is also a line of work on using a ring in tandemwith a wrist-
band for finger tracking and gesture interaction. Magic Finger [42]
and Light Ring [17] enables users to interact with surfaces using
optical sensor embedded in a wearable ring form factor. WRIST [43]
explores combining IMU data from a smartwatch and smart ring
for distal pointing and gesture interaction. Researchers have also
used magnetic tracking for wrist and finger tracking [3, 4, 26].

In addition, many commercial augmented and virtual reality
systems primarily use a handheld controller to continuously track
users’ hand pose. While these solutions offer great accuracy and
specific affordances, they are still limited by mobility constraints.
Tracking the hand without controllers and without line-of-sight
affords the potential to consider new freehand interactions. Ro-
toWrist is the first wrist-mounted device that can reconstruct wrist
angle continuously by using eight ToF IR modules sitting tightly on
the wrist. A key innovation of RotoWrist is that it does not require
users any training before using the system thus making it work out
of the box.

3 IMPLEMENTATION
The RotoWrist system consists of a sensing wristband that incorpo-
rates eight ToF IR modules and a controller arm band that handles
powering the sensing wristband and communicating the data back
to a host PC. The following sections provide details of the RotoWrist
hardware, capabilities and algorithm.

3.1 Sensing Wristband
One of the challenging aspects of designing a wristband is to manu-
facture one that can fit different people and whose sensing is robust
to different wrist sizes. In addition, the form-factor of the wristband
should be minimally invasive. We design the wristband as a top
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Figure 3: RotoWrist consists of a controller arm band that
handles communicating the data back to host PC and eight
time-of-flight modules embedded in a wristband.

and bottom part that connect together using a hinge mechanism.
All parts are made using a 3D printed Nylon material. The hinge
(Figure 1 right) on the side allows the band to open and close. On
the other side, we have leveraged an elastic band to securely fasten
the top and bottom parts. As shown in Figure 3 left, there are several
hooks on the top part that the elastic band can be connected to
based on the wrist size. To further support people with different
wrist sizes, we built two sizes of the sensing wristband – one with
a diameter of 120mm and the other 180mm.

As shown in Figure 3 (bottom right), we built a custom flex PCB
that incorporates eight time of flight modules (VL6180X) and a 22-
pin SMD connector. These modules are equally spaced around the
wristband and they sit perpendicular to and at most 8mm from the
wristband’s surface. Each individual sensor determines the distance
to the nearest object within a 25° cone by emitting pulsed infrared
light and timing the returned reflection. The eight TOF modules
consume only 13.6mA.

3.2 Controller Armband
The sensors on the wristband are connected to a custom made
daughterboard through a very thin 22 pin assembly cable1. Since
the recommended operating voltage for the ST ToF moudel is 2.8V,
the daughterboard also incorporates two bidirectional level-shifting
translators (TXB0106). As shown in Figure 3 (bottom left), the
daughter board sits on an Arduino Due. The sensors on the wrist-
band are connected to the microcontroller (Atmel SAM3X8E ARM
Cortex) on the Due board over I2C, which triggers measurement. A
timer-based algorithm is set to take measurement every 20ms from
all the sensors resulting in a tracking frame rate of 50Hz. A Spark-
Fun Bluetooth Mate Silver module also sits on top of the daughter
1 A22XSR22XSR36R254B
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board to facilitate sending the data to a host PC over Bluetooth.
Using Velcro tape, the armband also hold a small battery pack that
powers the Arduino and other components on the board.

3.3 Tracking Algorithm
We use a ToF-sensing array to track wrist orientation by comparing
the distance measurement from each sensor to the hand. The coni-
cal fields of view of each individual ToF sensor overlap significantly,
so several sensors simultaneously produce an in-range sensor mea-
surement. As parts of the hand move in and out of the field of view
of each ToF sensor, the distance reading from that sensor becomes
smaller and larger.

We use a simple tracking algorithm that reliably tracks wrist
orientations across different users. As shown in Figure 3, we name
each sensor in a clockwise fashion starting on the radial side from
S1 to S8. As expected, we observe that the topmost (S2, S3, S4) and
bottommost (S6, S7, S8) sensors have the most linear effect when
there is a flexion/extension activity (i.e. pitch) and the sensors on
the radial (S8, S1, S2) and ulnar (S4, S5, S6) sides are most responsive
to radial/ulnar deviation (i.e. yaw). We model these observations
using Equations 1 and 2 where DSi refers to the distance value that
is returned by the sensor Si at a certain point in time. For each of
the equations, there is a weight term associated with each of the
sensors (W p

si andW
y
si ) which defines the individual weight given to

a particular sensor and (Bp and By ) refer to a bias offset value.

Pitch =

( ∑
i=2,3,4

W
p
si

DSi
−

∑
i=6,7,8

W
p
si

DSi

)
+ Bp (1)

Yaw =

( ∑
i=1,2,8

W
y
si

DSi
−

∑
i=4,5,6

W
y
si

DSi

)
+ By (2)

These 14 parameters (7 each in pitch and yaw) are learned in a
user evaluation explained in Section 5. We formulated the problem
as a non-linear optimization problem which we solved using a
Levenberg-Marquardt algorithm.

4 USER EVALUATION SETUP
A ground truth system is required to evaluate RotoWrist orienta-
tion accuracy. Since the wrist is not a rigid body and the skin is
stretchable, tracking the angle of the wrist with respect to the arm is
challenging. The most precise method of measuring the wrist angle
is to use radiographs to measure the carpal bone angle on lateral
wrist [20]. Prior research has looked at building a custom-made
calibration device that has pivot joints with potentiometers to mea-
sure the wrist angle [37]. Since building such devices would affect
the IR reading from our wristband (due to the calibration device
occluding the IR sensors) and doing radiographs is not practical, we
used a fifteen-camera OptiTrack2 motion capture system to record
the real-time pose of the wrist, forearm, and hand stub at 240Hz.
We placed retro-reflective spheres on both the controller armband
and sensing wristband in known locations, as shown in Figure 4.
The participant wore the wristband and armband on their left hand
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Figure 4: Retro-reflective markers placed on the wristband,
armband and middle finger knuckle to facilitate tracking.

and a researcher placed a small IR retro-reflective marker on their
middle finger metacarpophalangeal joint.

We placed the armband retro-reflective markers in a way that
two of the four are in the direction of the arm (markers a2 and a3),
and two are perpendicular to the arm (markers a1 and a2) as shown
in Figure 4. The markers (a1,a2,a3) define our arm coordinate
frame:

®z = a2 − a3 ®x = a1 − a2 ®y = ®z × ®x (3)

We also placed four retro-reflective markers on the sensing wrist-
band. Markers w1, w2, and w3 are used to help track the arm ori-
entation in Section 6. w4 is placed on the top middle part of the
wristband and, together with k1, defines the wrist orientation vector
as ®h = k1 −w4. The placement ofw4 and k1 markers is chosen so
that when a person has a neutral hand pose (i.e. zero pitch and yaw),
®h is parallel to ®z and perpendicular to ®x . Given the wrist orientation
vector ®h and the arm coordinates (®x , ®y, ®z), pitch and yaw of the wrist
can be defined as follow:

pitch = arccos(®h.®y) yaw = arccos(®h.®x) (4)

5 USER EVALUATION 1: ANGULAR
ACCURACY

We performed two focused studies to evaluate the performance of
RotoWrist. The first study evaluates the dynamic tracking accuracy
of our system compared to a motion capture ground truth system.
Maintaining performance across worn sessions (i.e., reworn at a
later time) or between different people is a challenge for almost all
bio-sensing and wearable systems, since misalignment could result
in signal change. The following sections evaluates the robustness
of RotoWrist in different scenarios.
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We recruited 14 people (25-59 years old, Mean: 32) to evaluate
the tracking accuracy of our system. The study took less than 30
minutes and participants were compensated for their time. Upon
arrival, we asked the participants to sit on a chair while putting
their left arm on a table that was in front of them. A researcher
helped the participants put on the wrist and arm band and the
retro-reflective marker on the left hand of the user as explained in
Section 4. Based on their wrist sizes, five people wore the smaller
sized wristband and the other nine were given the larger wristband.
The wristband was placed where a user might typically wear a
smartwatch (roughly at the tip of the ulna) as depicted in Figure 3.
Using the elastic bands, the wristband was fit to the user making
sure they can move their wrist without discomfort. The location
of the armband is roughly placed in the middle of the forearm in a
way that the markers are facing the user. For consistency, we asked
users to maintain a fist pose throughout the study. Anecdotally,
RotoWrist is robust to different finger poses, though we have not
fully evaluated this effect.

The evaluation was conducted in two sessions and each session
had two phases. Phase 1, Defined motion: Participants were asked to
hold their wrist in a neutral position in the beginning of each session
and then perform three flexion/extension and three radial/ulnar
deviation movements, exercising their full, comfortable range of
motion. Phase 2, Random motion: Participants performed 4 minutes
of free-form movements while being asked to exercise all possible
wrist joints motions. After the two phases in the first session, the
wristband was taken completely off. The users were instructed
to take a minimum of 2 minutes of break. After the break, the
researcher asked the participants to put the wristband back on, and
the same procedure was given to the user and the two phases were
repeated.

Once data has been recorded from both the 50Hz RotoWrist
system and the 240Hz motion capture system, we must align and
synchronize the two data streams. Such a synchronization requires
the comparison of correlated events in each data stream, but the raw
sensor data is uncorrelated with the ground truth wrist orientation
given by Equations 4. To address this challenge, we use the time-
alignment technique presented in [40]. We compare the ground
truth wrist orientation with an approximation of pitch and yaw
specified by Equation 5 and 6. We use these signals to achieve
alignment at the start and end of the recorded data streams. We
then resample the motion capture system through interpolation to
50Hz to achieve frame-by-frame alignment with the RotoWrist.

Pitchapx = 150 ×

( ∑
i=2,3,4

1
DSi

−

∑
i=6,7,8

1
DSi

)
(5)

Yawapx = 200 ×

( ∑
i=1,2,8

1
DSi

−

∑
i=4,5,6

1
DSi

)
(6)

After synchronization, we formulated the problem as a non-
linear optimization problem which we solved using a Levenberg-
Marquardt algorithm. The cost function for this optimization prob-
lemwas set to be the difference in the pitch and yaw estimation from
Equation 1 and 2 and the angles calculated from motion capture
system using Equation 4 (Section 4).
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Figure 5: Shows the root mean square error and standard de-
viation among 14 participants using the three models.

Although using a motion capture system to capture the ground
truth of the orientation of the wrist with respect to the forearm
is practical, this method does not capture the full complexity of
the human hand anatomy. For example, in a neutral pose (i.e both
pitch and yaw are zero), we expect that the ®h is perfectly aligned
with ®z. This is not always true due to the geometry of the hand.
Therefore in evaluating RotoWrist, we add a one time offset, to
force the pitch and yaw estimation from Equations 1 and 2 to start
at zero. This offset is only required to compare RotoWrist estimates
with the wrist orientation derived from ground truth and is not
necessary for normal operation. We evaluate the tracking accuracy
of RotoWrist in three different categories: 1) cross-user where no
calibration is needed, 2) cross-session, and 3) per-session where a
user can perform a short calibration.

5.1 Cross-User Evaluation
As stated in Section 1, a widespread input solution should be ro-
bust and extensible (e.g. supporting different users and contexts
out of the box). Therefore, in this section, we evaluate how our
tracking holds between users. Notably, we learned the heuristic
model parameters presented in Section 3.3 on only phase 1 (defined
motion) from the first session of all participants except one and
tested on all of the data (including phases 1 and 2) from the left out
user. We repeat this for all of the participants. We learn a total of 14
parameters for this evaluation: 12 individual sensor weights, and 2
bias terms. The measured root mean square error (RMSE) for pitch
and yaw across users is 5.9° and 6.8° respectively.

5.2 Cross-Session Evaluation
To quantify how the performance holds when reworn by the same
user, we ran a leave-one-session-out cross validation for each of
our participants. We learned the same heuristic model parameters
presented in Section 3.3 on only phase 1 (defined motion) from
session one. After learning these parameters, we test on all data
(phases 1 and 2) from session two. The pitch and yaw RMSE in
degrees across all users is 4.2° and 4.0° respectively.
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Figure 6: Cumulative distribution function of pitch and yaw
orientation tracking error.

5.3 Per-Session Evaluation
Although we don’t expect users to calibrate RotoWrist each session,
to better shine a light on how the tracking improves with a very
small calibration procedure, we evaluate RotoWrist’s per-session
accuracy. To do this, we learned the heuristic model parameters
(Equations 1 and 2) from phase 1 of each session and tested on phase
2 of the same session. The pitch and yaw RMSE in degrees using
this calibration reduces to 3.5° and 3.6° respectively. We summarized
these results in Figure 5.

Figure 6 shows the cumulative distribution function (CDF) of
orientation accuracy between all three evaluations discussed above.
Figure 7 shows the spatial distribution of orientation tracking error
of the cross-user model projected onto a 2D plane among all users.
As depicted and expected, due to kinematics of the wrist, users
performed more negative yaw (flexion) and negative pitch (radial
deviation) movement which is aligned with the functional ranges
of the wrist joint motions [30]. Due to the geometry of the wrist,
the trapezoid bone and the thumb are placed slightly outside of the
forearm axis and because of that the performance of RotoWrist is
relatively better in radial than ulnar deviation as shown in Figure 7.

6 USER EVALUATION 2: POINTING
We conducted a second study to evaluate RotoWrist on a point-
ing task. Through this study we aim to understand whether Ro-
toWrist’s accuracy is sufficient for a pointing task and how this
performance compares with respect to ground truth wrist tracking
and ground truth forearm tracking. Forearm tracking can also be
enabled via wrist-worn sensing [2, 33], but involves large, fatiguing
arm movements, and thus is a contrasting point of comparison to
wrist tracking. We further evaluate how well RotoWrist pointing
adheres to Fitts’ law.

6.1 Design
Since the yawmotion range is smaller than the pitch, more research
is needed into how the angular movement across different wrist
rotational axes is mapped to the on-screen cursor. Prior work [10]
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Figure 7: Heatmap showing spatial distribution of error
among all users for cross-user evaluation.

Figure 8: 2D pointing study setup. Users sit on a chair and
use the space bar of a keyboard for target selection.

has shown that a mismatched mapping function between the differ-
ent wrist motion axes can still yield useful results. To keep things
simple, we conducted the pointing evaluation along the yaw and
pitch axes separately and in our 2D pointing study, we mapped
the yaw and pitch movements to a relative cursor movement (in
the x and y direction) on a nearby large display. For each of the
two axes (yaw and pitch), we had three independent variables:
Method (GTF - Ground Truth Forearm Tracking, GTW – Ground
truth Wrist Tracking, R - RotoWrist), Distance (Pitch: 100, 200, 400
pixels; Yaw: 50, 100, 200 pixels) , Width (20, 40, 60 pixels) resulting
in 2 × 3 × 3 × 3 = 54 conditions. The distance and width conditions
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Table 1: Pointing Study: 3-way ANOVA Main effects and pairwise comparisons. No interaction effects were found.

Condition ANOVA Pairwise Comparisons

Yaw MT
Method F (2, 22)= 9.252,p < 0.005,η2 = .457 GTW < GTF (p < .05),GTW < R(p < .05)
Distance F (2, 22)= 40.897,p< 0.001,η2= .788 50 < 100 < 200 (p < .05 ) for all
Width F (2, 22)= 48.817,p< 0.001,η2= .816 60 < 20(p < .001), 40 < 20(p < .001)

Yaw IT
Method F (2, 22)= 7.558,p < 0.005,η2 = .407 GTW < GTF (p < 0.005)
Distance F (2, 22)= 7.064,p < 0.005,η2 = .391 50< 200(p< .05), 100 < 200(p < .05)
Width F (1.29, 14.19)=8.54,p<0.01,η2=.437 60 < 20(p < .05), 40 < 20(p < .05)

Pitch MT
Method F (2, 22)= 13.034,p< 0.001,η2= .542 GTW < GTF (p < .005),GTW < R(p < .05)
Distance F (2, 22)= 34.115,p < 0.001,η=.756 100 < 200 < 400(p < .05) for all
Width F (2, 22)= 36.413,p< 0.001,η2= .768 60 < 40 < 20(p < .05) for all

Pitch IT
Method F (2, 22)= 6.862,p < 0.01,η2 = .384 GTW < GTF (p < .05),GTW < R(p < .05)
Distance F (2, 22)= 11.004,p<0.001,η2=.500 100< 400(p< .05), 200< 400(p< .05)
Width F (2, 22)= 19.947,p< 0.001,η2= .645 60 < 20(p < .005), 40 < 20(p < .005)

allowed us to investigate a realistic range of task difficulties. The
yaw and pitch distances are different since yaw has a lower angular
range of wrist motion. Based on initial pilots, we mapped the wrist
and forearm motion to pixels as follows: 1) For RotoWrist and GTW
tracking, we translated a single degree of angular wrist motion
along the yaw-pitch axis to 4.35 pixels along the x-y axis respec-
tively. For GTF, a 1cm arm motion along the horizontal-vertical
axis (rotating the forearm from the elbow) translated to 20 pixels
along x-y respectively. In our pilot study, these numbers allowed
all users to be able to reach the targets.

For each condition, participants performed 5 repetitions. We
followed awithin-subjects designwhere each participant performed
all conditions. We counterbalanced Axis and Method among the
participants using a Latin square and randomized the Distance and
Width. We recruited 12 participants (25-50 years of old) for the
study. All except one was right-handed. The study took 75 mins
and participants were compensated for their time. In total, we had
12 participants × 54 conditions × 5 repetitions = 3240 trials.

6.2 Procedure
Participants sat on a chair in front of a computer display. To allow
participants to use the keyboard on a hard surface, we placed a
table in front of them as shown in Figure 8. We used the same data
collection setup explained in Section 4 and calculated ground truth
wrist orientations using Equation 4. The study software was written
in PyGame.

Prior to beginning, participants were given a short instructional
session in which they familiarized themselves with the tasks and
how should they move their wrist or arm to move the cursor and se-
lect the target. The on-screen cursor appeared as a black dot and the
targets appeared as red circles. We implemented a standard point-
ing task [1] where the next target with the appropriate distance
and width appeared after the current selection. For selection, we
used a keyboard and asked the users to hit the space-bar when they
feel the black dot is in the red target. As is standard, we asked the
users to perform the task as quickly and as accurately as possible.
Participants were provided regular breaks.

6.3 Measures
We measure Movement Time (MT) – the time it took for the user to
complete a trial, and Incorrect Trials (IT) – the number of incorrect
trials out of five for each condition. An incorrect trial is when a user
misses a target (i.e the space-bar is hit while the cursor is outside
the target) or if the movement time is an outlier. We removed the
incorrect trials from the movement time measurement.

6.4 Results
For each axis, we conducted 3-way repeated measures ANOVAs
on movement time and incorrect trials. Greenhouse-Geisser cor-
rections were applied for violations of sphericity. The results were
similar for both axes. For both yaw and pitch, for Movement Time
and Incorrect Trials, we found significant main effects of all three
Method, Distance, and Width. No interaction effects were found.
Table 1 shows the main effects statistics.

Pairwise comparisonswith Bonferroni corrections (Table 1) showed
that the effects of distance and width broadly adhered to Fitts’ law
with Movement Time increasing with increasing distance and de-
creasing with increasing width. Since there are no interaction ef-
fects, we focus on the effect of Method on Movement Time and
Incorrect Trials.

6.4.1 Effect of Method. Figure 9 shows the movement time and
incorrect trials for each method for both axes. Ground truth wrist
is faster than ground truth forearm or RotoWrist according to the
pairwise comparisons, although the difference is only 0.25s. This
shows that users can complete the pointing task using RotoWrist
across all distances and width while only being slightly slower than
ground truth wrist tracking and similar to ground truth forearm
tracking. A similar trend is observed in incorrect trials.

6.4.2 Adherence to Fitts’ Law. Figure 10 illustrates the movement
time as a function of index of difficulty (ID) for the three different
methods among all participants. A linear regression model was
used to fit the data. All three methods show adherence to Fitts’
law, albeit a weak one given the lower R2 values. This shows that
alternate modeling approaches should be investigated to better
model pointing based on hand-tracking.
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Figure 9: Mean and standard deviation of movement time
and incorrect trials for pitch and yaw axis.
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Figure 10: Yaw and Pitch Movement Time vs Fitts’ ID

Overall, the results show that RotoWrist enables pointing tasks to
be performed with performance that is only slightly below ground
truth wrist tracking. Although the RotoWrist has similar perfor-
mance in movement time and error rate to ground truth forearm
tracking, it is still the preferred choice compared to ground truth
forearm tracking since it requires less movement from the user
and can be performed in a more subtle and comfortable manner.
This was profoundly echoed by the participants feedback where
they mentioned more fatigue when performing ground truth fore-
arm movements for pointing task. Using a wearable device like
RotoWrist to track wrist pose is also easier from an implementa-
tion perspective than enabling forearm tracking, which requires
another point of instrumentation in the world or on the head (e.g.,
HMD-mounted cameras to track the arm).

7 APPLICATIONS
The ability to track one’s wrist orientation reliably and precisely
without user training enables a wide range of applications. We
envision these applications to be with or without a HMD. In this
section, we discuss and demonstrate two features that RotoWrist
can enable.

Figure 11: A Rift-S controller is added to the controller arm-
band to facilitate 6-DoF tracking of the hand.

7.1 Pointing
AR and VR platforms represent a promising direction for next-
generation computing platforms. For many applications, being able
to point at objects precisely is of a great importance. The handheld
controller is a useful input device that is common in VR, but moving
the hands without the encumbrance of holding a physical handheld
controller could lead to more natural and casual experiences.

To demonstrate the potential of RotoWrist as a pointing device,
we demonstrate how it can be used to play Beat Saber, one of the
most popular VR experiences. The game is normally controlled
by two handheld controllers, and is particularly challenging as it
requires precise targeting and low-latency.

To build this demo, we attached a Rift-S handheld controller
to the top of the controller armband as shown in Figure 11. The
controller tracked the user’s arm pose with respect to the headset.
During a simple calibration phase, we determine the transformation
from the pose of the Rift-S controller to the pose of the hand. At
runtime, we add the wrist angles estimated from RotoWrist to the
transformed pose of the controller to accurately capture the 6-DoF
pose of the hand.

We asked ten users to try our demo for one song and provide
feedback. We purposefully had them play the game using a Rift-S
handheld controller on the right hand while having our device on
their left hand so that they can compare the two input devices. Al-
most all users were very excited about the idea of playing BeatSaber
without a handheld controller and were impressed by the tracking
accuracy. Two people mentioned that they felt that RotoWrist was
more delayed than the Rift-S handheld controller but not enough
to make them uncomfortable. Further improvements in speed and
accuracy may be possible by using a Kalman filter to proactively
estimate the next wrist orientation.

7.2 Free-form Hand Drawing
To highlight RotoWrist’s ability to perform fine-grained continu-
ous tracking (beyond gestural swipes), we implemented a drawing
application driven solely by the user’s wrist orientation. Since the
wrist has smaller range of motion in radial/ulnar deviation, the
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Figure 12: Handwriting examples using wrist-only motion.

drawing canvas shifts to the left by a few pixels each frame to
enable an infinite canvas. This free-form drawing can be used to
draw shapes for gestures recognition or can be used for handwrit-
ing reconstruction. Figure 12 shows a user that used RotoWrist to
write "hello" in the mid air. With appropriate visual feedback, we
anticipate the performance to be even better.

8 DISCUSSION
In this work, we demonstrated RotoWrist, a wearable wrist-worn
device that enables precise tracking of the orientation of the wrist.
Due to the simplicity of its tracking algorithm, RotoWrist does not
require user training to work. We also showed that with minimal ad-
ditional calibration, pitch and yaw accuracy improves and achieves
an RMSE of 3.5° and 3.6° respectively.

8.1 Complementing Vision-based Wristband
Tracking

We envision RotoWrist’s use either with or without a head-mounted
display. However, even though head-mounted cameras are getting
better at tracking hands and fingers, they still require line-of-sight.
In contrast, tracking a wristband with infrared fiducial markers is a
much simpler task. The combination of RotoWrist with a wristband
tracker that results in a complete 6-DoF tracking system, may be
preferable over a handheld controller in some scenarios. For exam-
ple, a user could comfortably interact with their hands at their side
where computer vision might fail, then seamlessly move into the
field-of-view of the cameras, which would begin tracking the arm
or wristband pose, and start direct manipulations. As a standalone
device, RotoWrist offers a rich input source for smartwatches. With
RotoWrist, a user can provide input using their wrist while keeping
their arm motionless at their side or resting on a table. With some
modifications, we envision that RotoWrist can capture information
about the pose of the fingers as well, e.g., detecting a fist vs a full
extended hand for target selection. This could be useful in mid-air
drag & drop interactions.

8.2 Limitations and Future Work
In this paper, we focused on how RotoWrist can be generalized
across sessions and users. We will now discuss how RotoWrist

can be generalized across different palm posture, location on the
forearm and rigidity. Although in our evaluations, we asked the
participants to make a fist, we observed that the tracking holds
even as the user opens their fist and starts moving their fingers.
It’s worth mentioning that the tracking error increases as the user
moves their thumb or pinky finger outwards, making a motion that,
to RotoWrist, appears similar to a radial/ulnar deviation motion.
Future work should consider how additional modeling or the use
of additional sensors can distinguish between finger motion and
wrist motion.

Although RotoWrist achieves a cross-user RMSE of 5.9° and 6.8°
for pitch and yaw, respectively, our system can be vulnerable to
major changes in the location of the band. We expect this can be
addressed by using a few seconds of online learning. Furthermore,
a challenge in the design of any wristband is sizing it for an appro-
priate fit across users. We also wanted the wristband to be rigid in
order for the ToF modules to be roughly at the same pose for all
users. Incorporating these modules in a flexible band requires more
attention as shifts in the position of the modules would degrade
performance. Furthermore, the relative angle of each module with
respect to the band is an important factor to consider. While incor-
porating RotoWrist in a flexible band, care should be take so that
the modules do not change orientation.

RotoWrist consists of the sensing wristband with eight ToF IR
modules and a controller arm band that supplies powering the sens-
ing wristband and handles data communicating back to a host PC.
Here, we have focused on the design of the sensing wristband and
optimizing the placement of the ToF IR modules. Incorporating the
controller components into the wristband is a fairly straightfor-
ward task—most smart watches do have an MCU and Bluetooth. In
designing the sensing wristband, we placed the ToF modules evenly
around the wristband. RotoWrist’s performance could be improved
further by additional optimization of the number and placement of
ToF modules on the wristband. Future work could also investigate
tracking accuracy with fewer sensors.

If RotoWrist is combined with other tracking systems, e.g., an
HMD-based hand tracker, the additional calibration step discussed
in Sections 5.2 and 5.3 could be done automatically during the first
few seconds of use. After this, the hand tracking from the headset
can stop and RotoWrist will be used for tracking.

9 CONCLUSION
In this work, we demonstrated RotoWrist, a wearable wrist-worn
device that performs continuous 2-degree-of-freedom (DoF) wrist
tracking using ToF IR sensing modules. RotoWrist works across
users without requiring user calibrations. The RotoWrist system
consists of a wristband that uses eight ToF IR modules to continu-
ously measures the absolute distance from the hand in real-time.
As the user moves their wrist, the relative distance between the
hand and each sensor changes and collectively RotoWrist uses these
measurements to track 2-DoF wrist orientation—flexion/extension
and radial/ulnar deviation. RotoWrist offers a rich input source for
a variety of wearable devices, including smartwatches and HMDs.
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