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Figure 1: AdaptiveSliders User Interface: A) Text box for inputting prompts to generate images using SDXL, B) Automatic
attribute suggestions, with the option to select or remove attributes freely, C) Interactive sliders with adjustable values to
manipulate the latent space, D) Image box displaying the initial generated image and ongoing edits, E) History tracker to
monitor user progress and changes.
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Abstract
Precise editing of text-to-image model outputs remains challeng-
ing. Slider-based editing is a recent approach wherein the image’s
semantic attributes are manipulated via sliders. However, it has
significant user-centric issues. First, slider variations are often in-
consistent across the sliding range. Second, the optimal slider range
is unpredictable, with default values often being too large or small
depending on the prompt and attribute. Third, manipulating one
attribute can unintentionally alter others due to the complex entan-
glement of latent spaces. We introduce AdaptiveSliders, a tool that
addresses these challenges by adapting to the specific attributes
and prompts, generating consistent slider variations and optimal
bounds while minimizing unintended changes. AdaptiveSliders also
suggests initial attributes and generates initial images more aligned
with prompt semantics. Through three validation studies and one
end-to-end user study, we demonstrate that AdaptiveSliders signif-
icantly improves user control and experience, enabling semantic
slider-based editing aligned with user needs and expectations.

CCS Concepts
• Human-centered computing → Text input; • Computing
methodologies→ Image manipulation.

Keywords
Generative AI, Diffusion Model, Sliders, Latent Space Interaction,
Large Language Models(LLMs), Multi-Modal Models, Visual Ques-
tion Answering(VQA) model
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1 Introduction
Text-to-Image (T2I) generativemodels have seen significant progress
in recent years, with models like DALL-E[39], Imagen[44], Dream
booth[42], and Stable Diffusion [40] demonstrating impressive ca-
pabilities in generating high-quality images. However, the outputs
often struggle to fully align with human intentions [12, 47], necessi-
tating the need for precise editing of output images at the semantic
level [19].

While multiple prompt-based editing approaches have been pro-
posed [22, 30], they are not well suited for performing nuanced
modulations of semantic attributes within the image (e.g. manipu-
lating the age of a character in the image). To solve this, a recent
approach involves generating sliders for semantic attributes which
enable the user to make precise adjustments to the attributes in a
continuous space without altering other parts [3, 17, 18, 36]. The
sliders are mapped to control different latent directions that repre-
sent different semantic attributes.

However, as we observed in our trials, there are significant user-
centric challenges when we try to use them in end-applications
as observed in Figure 2. First, the default slider bound values that
are fixed across all images and attributes are often sub-optimal,
ending up being too large or small. Small bounds might fail to

capture the range of changes desired in the attribute, while large
bounds could result in unrealistic images beyond a certain value.
Second, slider variations are often inconsistent across the sliding
range. For equal adjustments of the slider value, the change in the
corresponding attribute in the image can be a lot or little due to the
complexity of the latent space. Third, manipulating one attribute
can unintentionally alter others due to the complex entanglement of
latent spaces[17]. These challenges pose a significant impediment
to the usability of semantic editing through sliders and to their
adoption in real-world applications.

In this paper, we introduce AdaptiveSliders, a slider-based se-
mantic editing tool that addresses these challenges by adapting to
the specific attributes and prompts, and aligns slider manipulations
with user expectations. Upon receiving a prompt from the user,
AdaptiveSliders analyzes the prompt’s semantics and generates
potential attribute suggestions. It then aligns the zero value of the
sliders to the prompt description providing an appropriate starting
point that enables maximum flexibility for the user’s manipulations.
For slider manipulations, it generates adaptive slider bounds so that
the sliders do not go under or over an attribute’s logical range of
manipulation. It ensures slider variations are perceptually consis-
tent for the user by modifying how the images along the specific
semantic direction in the latent space map to the sliding range. It
minimizes unintended alterations to parts of the image that are
unrelated to the attribute being manipulated.

We conduct three validation experiments that evaluate the ac-
curacy and validate the effectiveness of specific components of
AdaptiveSliders. The first experiment demonstrates that the initial
zero-value aligned images generated by AdaptiveSliders match the
prompt more closely than the default outputs from stable diffusion.
In the second and third experiments, human assessors rated the
slider bounds and slider variations of AdaptiveSliders as being more
preferred and convenient compared to the default baseline. Finally,
we conducted a user study that demonstrates how AdaptiveSliders
outperforms the baseline semantic sliders (without our adaptive
components) on the task completion time, number of slider manip-
ulations, predictable task progression, and on the subjective metrics
of mental demand, effort, and frustration.

Our primary contribution in this paper is the AdaptiveSliders
tool that solves the multiple user-centric challenges pertaining to
semantic slider editing of images that relies on interacting with the
latent space of the diffusion model. To the best of our knowledge,
this is the first tool that attempts to solve these user issues in
this context. To this end, we make multiple sub-contributions: a)
The design of multiple components, each of which solves a user-
centric challenge (such as sub-optimal slider bounds or inconsistent
variation), and how they work together in the end-to-end system.
b) The validation of the main components of the system through
three experiments that demonstrate how effectively they solve the
challenges. We further contribute a validation dataset which can
be used for future comparative investigations into these challenges.
c) The user evaluation that demonstrates the significant impact
on user performance as a result of using AdaptiveSliders over a
baseline system that does not solve the user-centric issues.
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Figure 2: Illustrating user-centric challenges with semantic sliders. As the ’Chubby’ attribute increases in value, it causes other
unrelated attributes to change and shows images that should not be within slider bounds.

2 Related Work
2.1 Latent Space Exploration Techniques
Generative models offer unique capabilities for interacting with
the latent space, enabling exploration of image attributes. They
construct an entangled latent space with semantic directions corre-
sponding to various attributes which can be manipulated. Current
state of the art model suggest that generation from stable diffu-
sion model are of high fidelity as compared to any other models
[35, 39, 44]. While Diffusion model is being widely used, the seman-
tic structure of its latent space is less explicitly defined, making it
more challenging to find clear attribute-specific directions. Despite
these challenges, there are still ways by which attribute editing in
diffusion model can be achieved by Textual Inversion[15], Prompt
Engineering[2], fine-tuning [5]. Fine tuning helps in adding new
attributes to the original models[29] and finding semantic direc-
tions in the latent space[17]. Another way to add new attributes to
the model is by Low Rank Adaptation [23]. LoRA helps in adding
new concept without affecting the base diffusion model. Another
advantage of using LoRA models is finding meaningful semantic
directions in latent space of stable diffusion to achieve fine grained
control[16, 17]. Concept Sliders[17] uses LoRA to find meaning-
ful editing directions of the concepts in stable diffusion model.
Once the direction is identified, 𝛼 parameter is used to control the
strength of edits. Specifically, 𝛼 determines the extent to which the
original Stable Diffusion weights (𝑊 ) are modified in the identified
direction (𝑑), which corresponds to the LoRA weights. Below is the
equation where𝑊𝑒 represents the updated weights incorporating
the desired edits, W are the original Stable Diffusion weights and
d is the direction (LoRA weights). We used Concept Sliders as our
backend architecture providing control to the user for manipulating
meaningful directions for semantically editing the image.

𝑊𝑒 =𝑊 + 𝛼𝑑 (1)

2.2 Semantic Image Editing
Interacting with the latent space and steering the model to get
intended output has been explored a lot. Prompt engineering is
one way to explore the images[2, 4, 53] by providing users with
better support for text-based search. However, smooth control over
continuous attributes is difficult by just using text [36]. Prompt
based exploration are also less useful for guiding the intended out-
put because of sensitivity of the diffusion model to prompt-seed
pair. Even a slight change in the text prompt will lead to a new
image. Image galleries are one way to explore the latent space
images[13, 14, 48, 54]. However these approaches involve finding
the relevant attribute directions in latent space and then manipu-
late to get various images[13, 54]. Another way to get the desired
output is by providing additional context in the form of conditions
to the model[34, 55]. ControlNet[55] and T2I-Adapter[34] add extra
conditions in the form text, image, sketch and depth to guide the
output. Alternatively, editing the output is another way to explore
and get the desired output[7, 20]. Humans are likely be unsatisfied
with certain aspects of the initial image generated, which they will
attempt to improve over multiple iterations. Consequently, fine-
grained semantic control over the generation process is useful and
should be easy to use similar to initial generation. Various editing
techniques like prompt-prompt[22], image inpainting[50], drag-
ging the object[46] are some of the ways to iteratively improve the
output. Method like Promptcharm[50] allow users to first gener-
ate the image and then refine using image inpainting methods. As
interacting with the latent space allows users to explore and pre-
cisely edit the images, we use sliders for interacting with the latent
space. AdaptiveSliders contributes to this area by offering tools
supporting users to explore variations and semantically edit the im-
age consistent with their intention in the domain of text-to-image
generation.
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2.3 Slider Based UIs for Semantic Editing
Slider-based UIs have become a popular choice for interacting with
the latent space in generative models, as sliders effectively map
to specific latent dimensions, allowing users to manipulate the
strength of these dimensions numerically[9, 10, 13, 21, 37, 41]. Slid-
ers provide users with control over the generated output by ad-
justing the strength of edits, enabling both global and local image
modifications[9, 10, 28, 38, 41, 49]. For instance, Dang et al.[9] used
sliders to globally edit image face attributes, or to fine-tune local
edits after highlighting or inpainting [13, 14]. Additionally, sliders
have been applied to control the model’s attention to text, refin-
ing the generated content based on user inputs[50]. Furthermore,
sliders are widely used for design space exploration [10]. For ex-
ample, Davis et al.[10] explored fashion creativity by manipulating
the latent space of GANs using sliders to traverse and experiment
within the design space. In this work, we focus on using sliders
as the means of semantic editing/exploration by interacting with
GenAI models since sliders are very common in practical scenar-
ios. While sliders are effective for precise editing, determining the
optimal strength for accurate edits remains challenging. Due to
model randomness, small adjustments may not sufficiently alter the
desired attribute, while larger adjustments can lead to issues such
as disentanglement, poor image quality, and even absurd outputs.
Similar difficulty has been identified in other GenAI models such as
GANs[25]. This difficulty arises when latent codes are pushed out
of the optimal latent space. Additionally, the required strength for
edits can vary depending on the input. AdaptiveSliders addresses
these challenges by incorporating adaptive bounds for each at-
tribute slider, dynamically adjusting based on the specific prompt
and seed. This adaptive approach aims to improve the precision
and quality of edits, ensuring that users can achieve their desired
outcomes more consistently. We also evaluate the impact of these
adaptive bounds by comparing them to fixed bounds by conducting
user study.

3 Design Goals for a UI for Semantic Sliders
To understand the requirements for designing a slider based in-
teractive UI which allows users to explore the latent space of the
diffusion model while minimizing unintended output, we reviewed
priorworkswhich involved latent space exploration using sliders[8–
10, 13, 14, 17, 25, 28, 31, 33, 48, 51]. We summarize five design goals
for efficient exploration of semantic direction in diffusion model
using sliders.

3.1 D1: Attribute Suggestions based on prompt
Users may have a general idea of the target image they want to
achieve but may lack clarity on which attributes they can or should
manipulate. Thus, there is a need for suggesting the appropriate
attributes based on the user’s input prompt. Another practical
challenge is that semantic sliders require atleast a 30-minute pre-
training for the desired attributes[17] , which implies that sliders
cannot be generated in real time for attributes that are not pre-
trained. While the app developer can store thousands of pre-trained
attributes in a library, the user may ask to manipulate an attribute
that is not pre-trained (e.g. mood) even though a closely related
pre-trained attribute might be present (e.g. emotion). This again

points to the need for suggesting pre-trained attributes to the user
that are relevant to the user’s intentions.

3.2 D2: Initial Image to Align with Slider Value
Zero

The slider value for each attribute is initialized at zero for the initial
image generated by the diffusion model. However, if the attribute
in the initial image is misaligned with the prompt description (e.g.
the image shows an obese body structure for a prompt that says
’muscular’), the slider may end up not offering enough relevant
nuance on either side of zero for the user to try out different varia-
tions adjacent to their description. Since the default diffusion model
outputs often contain such misalignments [31, 51], it is important
to produce an initial image that aligns well with the prompt de-
scriptions so that it can serve well as the image that aligns with
slider value zero.

3.3 D3: Adaptive Mapping of Slider Bounds to
Latent Space

When a user moves the slider, they navigate the latent space along
a specific semantic direction. However, beyond a certain range, the
points in the latent space do not correspond well to the attribute
being manipulated due to entanglement with other semantic at-
tributes. This can cause unintended or meaningless alterations to
the image and can be confusing to a user. We thus require the
left and right slider bounds to map to the latent space such that
they cover enough range to enable a sensible exploration of the
attribute in the vicinity of the initial image, without devolving into
unintended or meaningless alterations (Figure 3). However, the
challenge here is that this sensible mapping range in the latent
space would be different for different attributes and different initial
images (Figure 2). Thus, to yield sensible bounds, the mapping of
the latent space to the slider bounds needs to adapt in real-time
based on the initial image and the attribute.

3.4 D4: Consistent Variation upon Slider
Manipulation

The latent space can be highly inconsistent leading to another
problem wherein the amount of variation in the image does not
map linearly to the distance moved on the slider. As Figure 6 shows,
the user may see minimal changes from 0 to 3 and then suddenly
see a huge change at 4. This again leads to an expectation mismatch
for the user and makes it hard to predict what’s going to happen in
the next manipulation. It results in a more trial-and-error-behavior
as opposed to a methodical navigation. Thus, our goal is to enable
a more consistent image variation when a slider is manipulated.

3.5 D5: Composing Images for Multiple
Attribute Changes

So far we have discussed problems pertaining to individual slider
manipulation. However, in a real-world application, the user would
want to manipulate multiple sliders at once and then observe their
combined output together. This becomes more important because
the generation of the edited image for a new slider value is not in-
stant, taking up 6-8s. Given this latency, it makes more sense for the
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Figure 3: Images representing the bounds problem for the ’chubby’ slider where the left most and right most images should not
be part of the bounds.

user to request the generation of a new edited image after manip-
ulating multiple sliders instead of sending multiple requests with
single edits. However, manipulating several latent attribute vectors
simultaneously can lead to unintended interference between these
control dimensions. While existing work has proposed solutions to
minimize such interference problems[43, 57], they have not been
tested in the context of semantic sliders. Our goal is to adapt these
approaches for sliders and enable less noisy image compositions
for multiple attribute changes.

4 AdaptiveSliders: Design and Implementation
To address the design goals identified in section 3, we developed
AdaptiveSliders, a tool for enabling user-aligned editing of semantic
sliders. In this section, we first describe the user interface design of
our tool, then detail its software implementation, followed by the
system description of how we attain the design goals.

4.1 User Interface Design
The user begins by entering a prompt in the text box, as shown in
Figure 1(A). AdaptiveSliders analyzes the prompt and recommends
relevant attributes for sliders, each representing a specific seman-
tic direction (D1). Users can further add more attributes from a
drop-down list which contains pre-trained attributes (Figure 1(B)).
AdaptiveSliders then analyzes the attributes and produces an initial
image that best aligns with the prompt Figure 1(D)(D2). This image
is the user’s starting point to make necessary edits with all slider
values being zero. In the process of generating the sliders for each
attribute, the system generates adaptive bounds for each attribute
enabling a sensible range (D3), applies the consistent variation map-
ping for each slider that ensures smooth and predictable changes in
response to slider manipulation (D4). Users can freely manipulate
multiple sliders Figure 1(C)(D5) and then press ’Edit Image’ to see
the changed image (Figure 1(D)). The prior image gets stored and
displayed in the History Tracker along with its corresponding slider
values (Figure 1 (E)). Users can choose to go back to any past image
and resume editing from that point.

4.2 Software Implementation
AdaptiveSliders was implemented on the Gradio platform, with all
machine learning algorithms running on a server equipped with

four A100 GPUs, each with 82 GB of memory. We used the SDXL
Turbo model [45] for text-to-image generation.

We trained the semantic direction for each attribute in the latent
space which would then map to the sliders. For this, we used LoRA-
based approach in Concept Sliders [17]. We used GPT-4 [1] to
generate words that described the extremes of an attribute. For
instance, to train the "age" attribute, one extreme would be "old,
highly wrinkled, grey hair" and the other extreme would be "young,
smooth skin, no wrinkles". Such descriptors were used for training
the LoRA-based attributes, each of which took about 30 minutes.

The LoRA based edits depend on a weight value [23] where lower
weights reduce the effect of LoRA and consequently the strength
of the edit, and higher weights increase its effect. For application
purposes, these values can be tuned by the users based on their edit-
ing needs [43]. For a LoRA-based slider, the zero value is mapped
to the default SDXL output image and the selected LoRA weight
range is mapped to the slider bounds. Thus, for the age attribute,
the left bound would represent young, while the right bound would
represent old with the intermediate values representing intermedi-
ate editing strengths. Current works [17, 27, 43] use a fixed default
range of -1 to 1. This fixed range and mapping causes multiple user-
centric challenges as we detail in section 3. We will now describe
how our AdaptiveSliders system addresses these challenges and
attains our design goals.

4.3 System Description: Attaining the Design
Goals

AdaptiveSliders suggests prompt-specific attributes utilizing the
Attribute Suggestion module (Section 4.3.1) with the help of large
language models (LLMs). The system also provides the best aligned
image with prompt (Section 4.3.2), allowing users to explore the
attribute space within defined bounds (Section 4.3.3) while main-
taining consistent variations (Section 4.3.4) and finally composing
multiple sliders to edit multiple attributes simultaneously (Section
4.3.5)

4.3.1 Attribute Suggestion. This module retrieves contextually rel-
evant attributes based on the user’s prompt. The module consists
of two steps: (1) Attribute Extractor, (2) Attribute Mapper.

(1) Attribute Extractor: This step uses GPT-4 to identify at-
tributes in the prompt that could have a continuous range
of intensities that can be represented visually. For instance,
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Figure 4: Workflow for Initial Image Alignment: A prompt is used to generate 16 images and parallely is used to generate
questions by DSG. Then, Question Filter(QF) LLM identifies smile-related questions, which are then evaluated by the VQA
model to compute a total score for each image. The image with the highest score is selected as the initial image.

for the prompt "A muscular smiling male person in a tropical
weather garden", the extracted attributes are muscular, smile,
and tropical weather. To guide GPT-4 in identifying visual
continuous attributes, we adopted a few-shot fine tuning
method, providing a few examples to help it understand the
idea of visual continuous attributes. Our prompt to GPT-4
encourages a step-by-step reasoning approach that ensures
accurate detection and extraction of attributes within the
prompt. See Figure 22 in Appendix.

(2) Attribute Mapper: As mentioned earlier, any pre-trained
library of attributes would be finite. Even if an application
focuses on a specific domain of images (e.g. fitness) and pre-
trains exhaustively for the relevant attributes, it will still not
be able to train on all possible synonyms of similar concepts
(e.g. thin and lean point to the same concept). Therefore, in
this step, we map the extracted attributes from the previous
step to their best matches in our existing pretrained library
of attribute sliders. We again use GPT-4 to find this match.
The mapping can be one-to-one or one-to-many, depending
on the nature of the continuous attributes (e.g. grin attribute
present in the prompt will be mapped to Smile Slider). To
guide accurate mapping, we employed a similar few-shot
learning approach, providing instructions and examples as
an initial prompt for ChatGPT, as detailed in the appendix
Figure 23. The module also assesses whether new sliders are

needed to better capture specific attributes, in which case,
the user can choose to wait as the training of the new sliders
becomes complete.

Algorithm 1 Initial Image Alignment
INPUT: prompt, attribute ⊲ prompt and attribute
OUTPUT: 𝑉 ⊲ Image with highest Total VQA Score
1: questions = DSG(prompt)
2: affected_questions = Question Filter LLM(questions, attribute)
3: for 𝑠𝑙𝑖𝑑𝑒𝑟_𝑣𝑎𝑙𝑢𝑒 = −𝑛,−𝑛 − 1, .. − 1, 0, 1, ..., 𝑛 − 1, 𝑛 do
4: 𝑖𝑚𝑎𝑔𝑒𝑖 =𝑚𝑜𝑑𝑒𝑙 (𝑝𝑟𝑜𝑚𝑝𝑡, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑠𝑙𝑖𝑑𝑒𝑟_𝑣𝑎𝑙𝑢𝑒𝑖 )
5: ⊲ Generate image for all slider value
6: 𝑇𝑜𝑡𝑎𝑙_𝑉𝑄𝐴_𝑆𝑐𝑜𝑟𝑒𝑖 =

∑𝑘
𝑞=1 𝑃 (𝑌𝑒𝑠 |𝑖𝑚𝑎𝑔𝑒𝑖 , 𝑎𝑓 𝑓 𝑒𝑐𝑡𝑒𝑑_𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠𝑞)

7: ⊲ Calculate Total VQA score for all the images
8: end for
9: 𝑉 = arg_max(Total_VQA_Score) ⊲ Select image with the

highest VQA score

4.3.2 Initial Image Alignment. The default scenario is where the
original SDXL image is mapped to a slider value of zero. To produce
an initial image for a slider value of zero that better aligns with the
prompt descriptions, AdaptiveSliders explores 16 images spanning a
large, continuous latent space of the attribute, including the original
default image from SDXL. It then selects the best-matching image
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that is most faithful to the description of each attribute in the
prompt and consequently to the overall prompt. We generate the
16 images by selecting equidistant images within the LoRA weight
range of -2 to 2. In our investigations, we found that -1 to 1 often
does not cover enough range of the attribute.

To find the best-match image among these, we devise a Visual
Question Answering (VQA) approach. Recent large multimodal
models are capable of performing the VQA task wherein the model
can provide detailed answers to questions about an image [24, 31,
47]. Leveraging similar capabilities, GenAssist [26] used a VQA-
based approach to summarize image descriptions. In contrast, our
approach focuses on extracting probability scores from the VQA
model to determine the likelihood of specific features being present
in an image. For instance, instead of obtaining detailed answers,
we query the model to estimate the probability that a person in the
image has curly hair. This unique use of VQA probability scores
forms a key component of our approach. Our approach progresses
as follows: (i) We first generate the questions using Dynamic Scene
Graph (DSG) [6] to provide full semantic coverage of the prompt.
DSG uses ChatGPT to generate questions. (ii) We then pass these
questions to the custom Question Filter (QF) LLM (see appendix
Figure 24) which identifies questions influenced by the suggested
attributes. For example, as shown in Figure 4, QF LLM identifies
two questions that are related to the smile attribute. (iii) We then
calculate the VQA score[32] for each such question for each of the
16 images.

𝑃 (𝑌𝑒𝑠 |𝐼𝑚𝑎𝑔𝑒,𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛) (2)

The total VQA score is calculated for each image is as shown
below:

𝑇𝑜𝑡𝑎𝑙_𝑉𝑄𝐴_𝑆𝑐𝑜𝑟𝑒𝑖 =
𝑘∑︁

𝑞=1
𝑃 (𝑌𝑒𝑠 |𝐼𝑚𝑎𝑔𝑒𝑖 , 𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑞) (3)

(iv) The image with the highest score is considered to be aligned
with the prompt and becomes the initial image shown to the user
with its weight value corresponding to the new slider value zero
as shown in Algorithm 1. Note that if there are multiple suggested
attributes, then multiple such sets of 16 images are generated cor-
responding to each attribute and the highest score image is found
out for every attribute. A new image is generated using their cor-
responding weight values (see section 4.3.5) which serves as the
initial image and their weight values serve as the new zero value
for the respective sliders.

4.3.3 Adaptive Slider Bounds Mapping. As mentioned earlier, ex-
isting work maps a fixed LoRA weight range to slider bounds.
However, this range does not work well across different attributes
and initial images (Figure 3). Our solution in AdaptiveSliders avoids
using single fixed range, but determines the optimal range mapping
for a particular attribute and initial image scenario. To this end, we
again employed a similar VQA approach as shown below in Figure 5.
We use the same 16 images as before. For VQA, for a particular
attribute, this time we pick all questions that do not pertain to that
attribute. This is because to establish sensible bounds, we want to

Algorithm 2 Adaptive Slider Bounds
INPUT: prompt, attribute ⊲ prompt and attribute
OUTPUT: 𝑙_𝑏𝑜𝑢𝑛𝑑,𝑢_𝑏𝑜𝑢𝑛𝑑 ⊲ bounds
1: questions = DSG(prompt)
2: unaffected_questions = Question Filter LLM(questions, at-

tribute)
3: for 𝑠𝑙𝑖𝑑𝑒𝑟_𝑣𝑎𝑙𝑢𝑒 = −𝑛,−𝑛 − 1, .. − 1, 0, 1, ..., 𝑛 − 1, 𝑛 do
4: 𝑖𝑚𝑎𝑔𝑒𝑖 =𝑚𝑜𝑑𝑒𝑙 (𝑝𝑟𝑜𝑚𝑝𝑡, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑠𝑙𝑖𝑑𝑒𝑟𝑣𝑎𝑙𝑢𝑒𝑖 )
5: ⊲ Generate images for all slider values
6: end for
7: 𝑢_𝑏𝑜𝑢𝑛𝑑, 𝑙_𝑏𝑜𝑢𝑛𝑑 ⊲ Upper and Lower Bound
8: for 𝑠𝑙𝑖𝑑𝑒𝑟_𝑣𝑎𝑙𝑢𝑒 = −𝑛,−𝑛 − 1, .. − 1, 1, ..., 𝑛 − 1, 𝑛 do
9: ⊲ Check for each slider value
10: for 𝑢𝑛𝑎𝑓 𝑓 𝑒𝑐𝑡𝑒𝑑_𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 = 0, 1, ..., 𝑞 − 1, 𝑞 do
11: ⊲ Check for each question
12: 𝑣𝑞𝑎_𝑠𝑐𝑜𝑟𝑒 = 𝑃 (𝑦𝑒𝑠/𝑢𝑛𝑎𝑓 𝑓 𝑒𝑐𝑡𝑒𝑑_𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠𝑞, 𝑖𝑚𝑎𝑔𝑒𝑖 )
13: if vqa_score < 0.5 then
14: if slider_value > 0 then
15: 𝑢_𝑏𝑜𝑢𝑛𝑑 = 𝑠𝑙𝑖𝑑𝑒𝑟_𝑣𝑎𝑙𝑢𝑒 − 1
16: else
17: 𝑙_𝑏𝑜𝑢𝑛𝑑 = −𝑠𝑙𝑖𝑑𝑒𝑟_𝑣𝑎𝑙𝑢𝑒 + 1
18: end if
19: end if
20: end for
21: end for

find out where the images of a particular attribute start showing
changes unrelated to the attribute (’entanglements’). If the VQA
score for any question falls below a threshold of 0.5 for the image,
that image is considered out of bounds. The bounds for an attribute
in the context are thus chosen based on the lowest and highest
slider values among the images that are not out of bounds as shown
in Algorithm 2. These are then mapped to the slider bounds on the
UI (Figure 1).

4.3.4 Consistent Slider Variation. Mapping the slider values within
the range linearly to the corresponding LoRA weight range causes
inconsistent variations. Instead, in AdaptiveSliders, we observe the
image variations and generate a dynamic remapping specific to the
attribute and the initial image (Figure 6). AdaptiveSliders first char-
acterizes the original variations by calculating the LPIPS score at
multiple values within the bounds found in Adaptive sliders bounds
mapping. LPIPS score is an image similarity metric considered to
be closely aligned with human perception. The score is calculated
in an incremental manner where the current image’s similarity is
calculated relative to the previous one when progressing through
images at equidistant points over the range. The LPIPS curve (Fig-
ure 7) is not linear which causes the inconsistent variation. We
remap the UI slider values to the LoRA weight range such that the
resultant LPIPS curve becomes linear (see Algorithm 3). Note that
since LPIPS is not a perfect proxy for human visual perception, we
may still see inconsistencies, however the problem is minimized to
a large extent.

4.3.5 Composability for Multiple Attributes. Existing work has
proposed multiple methods to combine and use multiple LoRA
models at the same time, such as LoRA Switch, LoRA Compose and
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Figure 5: Workflow for Adaptive Slider Bounds: A prompt is used to generate 16 images. Parallely, prompt is used to generate
questions by DSG. A prompt is used to generate 16 images and parallely is used to generate questions by DSG. Then, Question
Filter(QF) LLM finds questions not related to smile. These questions are then sent to VQA for scores. The index of the image
with the score < 0.5 for any question becomes out of bounds and the previous index becomes the bound.

Algorithm 3 Slider Consistency
INPUT: prompt, attribute ⊲ prompt and attribute
OUTPUT: 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 ⊲ Unit scale for each unit increment
1: for 𝑠𝑙𝑖𝑑𝑒𝑟_𝑣𝑎𝑙𝑢𝑒 = −𝑛,−𝑛 − 1, .. − 1, 0, 1, ..., 𝑛 − 1, 𝑛 do
2: 𝑖𝑚𝑎𝑔𝑒𝑖 =𝑚𝑜𝑑𝑒𝑙 (𝑝𝑟𝑜𝑚𝑝𝑡, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑠𝑙𝑖𝑑𝑒𝑟_𝑣𝑎𝑙𝑢𝑒𝑖 )
3: ⊲ New scale
4: end for
5: for 𝑠𝑙𝑖𝑑𝑒𝑟_𝑣𝑎𝑙𝑢𝑒 = −𝑛,−𝑛 − 1, .. − 1, 0, 1, ..., 𝑛 − 1 do
6: 𝑙𝑝𝑖𝑝𝑠_𝑠𝑐𝑜𝑟𝑒𝑖 = 𝐿𝑃𝐼𝑃𝑆 (𝑖𝑚𝑎𝑔𝑒𝑖 , 𝑖𝑚𝑎𝑔𝑒𝑖+1)
7: ⊲ Get LPIPS score for all images
8: end for
9: 𝑡𝑜𝑡𝑎𝑙_𝑔𝑟𝑎𝑑_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =

∑𝑛−1
𝑖=1 𝑙𝑝𝑖𝑝𝑠_𝑠𝑐𝑜𝑟𝑒𝑖

10: 𝑡𝑜𝑡𝑎𝑙_𝑔𝑟𝑎𝑑_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 =
∑0
𝑖=−𝑛 𝑙𝑝𝑖𝑝𝑠_𝑠𝑐𝑜𝑟𝑒𝑖

11:
12: 𝑢𝑛𝑖𝑡_𝑠𝑐𝑎𝑙𝑒 (𝑖,𝑖+1) = 𝑙𝑝𝑖𝑝𝑠_𝑠𝑐𝑜𝑟𝑒𝑖 ∗ 𝑛/𝑡𝑜𝑡𝑎𝑙_𝑔𝑟𝑎𝑑_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
13:
14: 𝑢𝑛𝑖𝑡_𝑠𝑐𝑎𝑙𝑒 (−𝑖−1,−𝑖 ) = 𝑙𝑝𝑖𝑝𝑠_𝑠𝑐𝑜𝑟𝑒𝑖 ∗ 𝑛/𝑡𝑜𝑡𝑎𝑙_𝑔𝑟𝑎𝑑_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
15: ⊲ Previous unit scale changes to this new scale.

LoRAMerge [43, 57]. However, none of these approaches have been
applied towards semantic sliders. We tried all three and found LoRA
Merge to work best for composing outputs with multiple LoRA-
based sliders. We incorporate this solution into AdaptiveSliders as

well as into the Baseline condition we use in our user study since
the system would not be usable without it.

𝐿𝑜𝑅𝐴_𝑚𝑒𝑟𝑔𝑒 =

𝑆∑︁
𝑖=1

𝐿𝑜𝑅𝐴𝑖 (4)

5 Validation Experiments
We conduct three experiments to validate the performance of our
proposed approaches for 1) Initial Image Alignment, 2) Adaptive
Slider Bounds Mapping, and 3) Consistent Slider Variation. We first
created a dataset of 100 prompts that we subsequently used in all
three validations.

5.1 Validation Dataset
We used GPT-4 to generate the 100 prompts providing our pre-
trained attributes information (appendix Table 5) along with five
hand-crafted example prompts to guide GPT-4 to create similar
prompts that include our pre-trained attributes. Additionally, we
specified the desired prompt length, ranging from small (1 attribute)
to large (5 attributes). We perform first iteration asking GPT to give
20 prompts at temperature value 0. Then we vary the temperature
of GPT-4 from 0.1 to 0.4 four times with 0.1 unit change to get
additional 80 prompts. We further verified that these prompts did
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Figure 6: Slider Variation: Top is baseline which shows the inconsistent age variation where there is little age variation from 1
to 3 and suddenly a huge jump from 3 to 4. Bottom is AdaptiveSliders where the variation is more consistent.

Figure 7: The Red line denotes the baseline lpips curve for
Figure 6 while black curve denotes the AdaptiveSlider consis-
tent slider variation. The green line denotes correspondence
LPIPS values for slider value at 3 in both baseline and Adap-
tiveSliders.

not contain attributes that we did not pre-train and asked GPT-4
to modify those prompts to remove such attributes and regenerate
the prompt. The regenerated prompts were again verified before
being finalized.

5.2 Experiment 1: Initial Image Alignment
We evaluated how well the initial images generated by our method
aligned with the prompt descriptions compared to the default image
from SDXL. We use two metrics to evaluate this image-text align-
ment: CLIP score [39] and ImageReward [51]. While CLIP score

Figure 8: Data samples for evaluating our proposed ap-
proaches

is a highly popular metric, ImageReward is a recent metric that
has been shown to outperform CLIP score significantly in terms of
understanding human preference. CLIP scores lie between 0 and
100, the higher the better. ImageReward scores roughly follow a
standard normal distribution, with a mean of 0 and a variance of 1.
Scores above 0 are generally considered good, with higher positive
values indicating better alignment.

We randomly sampled 100 attribute-prompt pairs from our dataset.
For each sample, we retrieved two images: 1) the original image gen-
erated by SDXL by default and 2) the initial aligned image suggested
by our AdaptiveSliders system.

5.2.1 Results. As Table 1 shows, AdaptiveSliders has a highermean
ImageReward score and similar CLIP scores. A Wilcoxon signed
test found significant differences in the ImageReward score. This
shows that AdaptiveSliders was indeed effective in finding a better
prompt-aligned image (𝑝 = 0.012) as shown in Figure 9.
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Figure 9: Left Image is generated by SDXL and right image is
generated byAdaptiveSliders by exploring the Smile attribute

5.3 Experiment 2: Adaptive Slider Bounds
Mapping

We conducted a human assessment of how well AdaptiveSliders’
slider bounds compared to the fixed default bounds (LoRA weights:
-1 to 1) that have been used in prior work [17, 43]. We randomly se-
lected 100 prompt-attribute pairs from our dataset. For each prompt-
attribute sample, we generated the pair of images corresponding
to the AdaptiveSliders slider bounds and the pair of images corre-
sponding to the default bounds.

Each sample was evaluated by three human assessors who were
invited from the technical university where they were shown the
AdaptiveSliders and baseline pairs side by side as shown in Figure 25
(Appendix). The assessors were explained the rationale behind the
task and were asked to select the pair that depicts the largest sensi-
ble range for the specified attribute while other parts of the image
remain unaltered. If the two pairs looked similar, the assessors were
asked to select ’Can’t Decide’.

5.3.1 Results. We analyzed the evaluation data and used major-
ity voting to determine the final decision for each sample. Users
preferred AdaptiveSliders in 71 samples, while the default method
was preferred in 18 samples. For 11 samples, no preference was
indicated. To assess the inter-rater agreement among the three
annotators, we used Fleiss’ Kappa measure. The agreement score
of 0.78 indicates substantial agreement. This demonstrates the ef-
fectiveness of AdaptiveSliders in choosing highly relevant slider
bounds as shown in Figure 10.

5.4 Experiment 3: Consistent Slider Variation
We again performed a human assessment to evaluate the varia-
tions depicted by AdaptiveSliders vs. the baseline with the original
variations. As done previously, we randomly selected 100 prompt-
attribute samples. We then identify the adaptive bounds for each
sample to avoid images with unintended alterations. We then gen-
erate two sets of 9 images within these bounds for each sample, one
with the original variation and other with our AdaptiveSliders vari-
ation. The assessors were then shown the two sets and asked which

one represents a more consistent variation as shown in Figure 26 (
Appendix).

5.4.1 Results. We used majority voting as before. Users preferred
AdaptiveSliders in 66 samples, while only 11 samples were favored
in the baseline, and 23 samples had no preference. The inter-rater
agreement score was 0.71 indicating substantial agreement. This
demonstrates that AdaptiveSliders is highly effective in making the
image variations for slider manipulations more consistent.

6 Slider Manipulation User Study
The three validation experiments prove the individual effectiveness
of our proposed components in minimizing the user-centric chal-
lenges pertaining to semantic slider based image editing. Next, we
conducted a user study to evaluate how our AdaptiveSliders tool,
that brings these components together, impacts user performance
and experience when performing slider manipulations.

6.1 Study Design
6.1.1 Baseline. Our goal was to do an objective comparison of user
speed, accuracy, and effort when performing slider manipulations
with and without our proposed solutions of adaptive bounds and
consistent variation. We thus designed a goal-directed task where
the participants had to reconstruct a target image starting from
the same initial image [9]. To our knowledge, there are no prior
works solving the user-centric challenges in semantic sliders for
diffusion-based images. Our work is the first to tackle these issues
comprehensively. Consequently, we defined the baseline tool as
one that shared the same UI as AdaptiveSliders but without the
consistent variation and adaptive bounds components. This enables
a fair comparison where any observed performance differences
could be attributed to our AdaptiveSliders components.

The foundational works on LoRA [23] and QLoRA [11] have
explored weight values from 0.25 to 2 (e.g. 0.25 denotes a range
from -0.25 to +0.25). For our baseline scenario, we used a weight
range of -2 to 2 (which mapped to -8 to 8 on the sliders in the UI),
so that the range could fully capture the potentially large spectrum
of different semantic attributes (See Figure 19 in Appendix for a
distribution of slider bounds required to capture the entire range for
our validation dataset). This is important because the target image
that the participant needs to reach should be an achievable target
in the Baseline. Since the target images are selected by random
(see Table 2 for the LoRA weights of the target images), selecting
a smaller range would imply that the participants would never be
able to reach the target image in certain cases in the Baseline which
would be unfair to the baseline scenario. Thus, the weight range of
-2 to 2 served as the appropriate default baseline.

6.1.2 Task Design. Participants did 9 reconstruction tasks each
with the AdaptiveSliders and Baseline tools. The order of tools was
counterbalanced across participants.

We selected 9 prompts from our dataset for the 9 tasks. For
each prompt, we used a fixed seed to ensure the same initial image
across all participants. Further, as soon as participants typed in
the prompt, the exact sliders needed to reach the target image
were displayed along with the initial image. The original image
generated by SDXL served as the starting image, corresponding to
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Table 1: Metrics for Comparison. Higher the better

Clip ImageReward

Original 31.52 ± 1.98 0.73 ± 1.06
AdaptiveSliders 32.91 ± 1.43 0.88 ± 1.01

Table 2: The 9 tasks used in the slider manipulation user study. 9 prompts for each task are used for generating original image
by stable diffusion. The table also details the attributes manipulated by users, along with the weight values applied to generate
the target images. Additionally, it includes the perceptual similarity scores (LPIPS) between the original and target images.

Task Prompt Attribute (Weights) Original Image Target Image LPIPS

1

A teenage female person in anime style, her
face showing intense anger with sharply drawn
eyebrows and a slight blush on her cheeks. Her
hair is a vibrant pink, styled into spiky pigtails,
contrasting with her dark, Gothic Lolita outfit.

Age (1.25) 0.152

2 A realistic male person wearing summer light
fabrics clothes, walking on the street Seasonal Dress (0.45) 0.095

3 A muscular male person wearing white t-shirt
standing on the beach Muscular (1.45) 0.105

4 An elderly man with a slight smile and medium
length hair, in a modern office.

Age (0.75), Smile (1), Hair length
(0.5) 0.108

5
A surprised young woman with straight hair,
wearing a winter coat, standing in the park, in
front of the house.

Surprise (0.5), Age(1.25), Curly
Hair(1.75) 0.049

6 A pixar style smiling male person in tropical
weather garden.

Real Person (-1.25), Smile (0.9),
Tropical Weather(-1.6) 0.244

7

In a whimsical, animated park, a happy child
with short, spiky hair and oversized glasses, joy-
fully leaps from one floating lily pad to another,
beneath a candy-colored festival sky, rendered
in a playful 2D style.

Age (0.75), Smile(0.75), Hair
length(0.75), Weather(1), festive
(0.75)

0.164

8

An anime character, a young girl with large
expressive eyes filled with fear, hiding behind
a tree in a dark, enchanted forest. Her hair is
short and messy, in summer school uniform.

Age (1.1), Eye Size (0.75), Hair
Length (0.87), Winter Dress
(1.25), Dark Weather (0.26)

0.263

9

A male white fashion blogger confidently pos-
ing in a old clothes with sparse patterns, sum-
mer outfit. He is smiling and has medium length
hair.

Smile (0.9), Hair Length (0.8),
Seasonal Dress (1.26), Modern
Dress (0.37), Pattern Frequency
(1.6)

0.247
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Figure 10: Left side image is original image from SDXL model for the prompt - "A man smiling contentedly while fishing at a
lake, surrounded by mountains during a cloudy day". The remaining images show slider bounds for weather (a) minimum
bound using baseline (b) maximum bounds using baseline (c) minimum bounds using AdaptiveSliders (d) maximum bounds
using Adaptive Sliders

a slider value of 0 in both tools. Thus, for a particular prompt, all
participants performed the task of slider manipulation starting from
the same initial point towards the goal of reaching the same target
image. To maintain consistency in the final target image generation
and prevent varying task difficulty due to different images, the
same 9 images were used across both tools. This is similar to the
approach followed by GANSlider [9]. Since the mapping of slider
values to image changes is very different for AdaptiveSliders and
Baseline, the possibility of learning effects impacting the results
was low. We found no order effects in our results.

The 9 tasks were split into 3 levels of complexity - requiring 1
slider, 3 sliders, and 5 sliders respectively. Please see Table 2 for
the exact tasks. To generate the target images for each task, we
randomly selected offsets between -2 and 2 for each slider.

6.1.3 Participants. We ran a within-subjects study with 12 partici-
pants (9 male, 3 female, age: 21-29 years), all of whom had some
experience with image editing tools. 6 participants had prior expe-
rience with text-to-image tools like DALL-E and Stable Diffusion.
The overall design was 12 participants x 2 Tools x 9 Tasks (3 task
Complexities x 3 tasks).

6.2 Procedure
Participants were given an initial introduction to the study. Since
the interface was the same across both tools, participants were
provided with a brief tutorial and a period of 15 mins to familiarize
themselves with the interface. There was no time limit imposed
during the actual tasks, and the users were instructed to end the task
whenever they felt they had successfully reached the target image.
After completing all tasks with one tool, participants were asked
to fill out a 7-point Likert scale questionnaire and the NASA-TLX
survey. Upon completing the tasks with both tools, we conducted
a 20-minute post-session interview to gather subjective feedback
and gain further insights. The entire study lasted between 90 and
120 minutes.

6.3 Measures
In addition to subjective measures, we analyzed the objective mea-
sures of task completion time, task completion accuracy, number

of slider interactions, and task completion progress. For accuracy,
we used the LPIPS score to measure the distance from the target
image. LPIPS [56]is an image similarity metric that is considered to
align well with human perception.

Figure 11: Slider Manipulations Comparison (*) = (p < 0.05)

7 Results
7.1 Task Completion Time
We conducted separate analyses for each of the task complexities.
The Shapiro-Wilk tests showed that normality cannot be assumed.
We therefore performed Wilcoxon signed-rank tests to analyze the
effect of Tool on completion time. As Figure 12 shows, completion
time was significantly lower with AdaptiveSliders (AS) compared
to Baseline (B) for all 3 task complexities, 1-slider (𝑝 = 0.006, 𝑍 =

−2.686, 𝑀𝐴𝑆 = 37.74, 𝑆𝐷𝐴𝑆 = 13.46, 𝑀𝐵 = 55.13, 𝑆𝐷𝐵 = 25.33),
3-slider (𝑝 = 0.028, 𝑍 = −2.190, 𝑀𝐴𝑆 = 94.41, 𝑆𝐷𝐴𝑆 = 39.92, 𝑀𝐵 =

121.71, 𝑆𝐷𝐵 = 68.99), 5-slider (𝑝 = 0.035, 𝑍 = −2.105, 𝑀𝐴𝑆 =

213.00, 𝑆𝐷𝐴𝑆 = 84.07, 𝑀𝐵 = 260.93, 𝑆𝐷𝐵 = 84.44).



AdaptiveSliders: User-aligned Semantic Slider-based Editing of Text-to-Image Model Output CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 12: Time Performance Comparison (*) = (p < 0.05)

Figure 13: Final LPIPS Score Comparison. Lower the better

Table 3: Metrics: LPIPS score. lower the better

LPIPS

1-slider AdaptiveSliders 0.015 ± 0.014
Baseline 0.018 ± 0.017

3-slider AdaptiveSliders 0.030 ± 0.022
Baseline 0.029 ± 0.020

5-slider AdaptiveSliders 0.040 ± 0.015
Baseline 0.046 ± 0.021

7.2 Task Completion Accuracy
We did not find any significant differences in the LPIPS score for
AdaptiveSliders vs Baseline for the three task complexities (Fig-
ure 13). Note that a lower LPIPS score implies a better match with
the target image. We did find a significant effect of task complex-
ity on the overall LPIPS score which indicates that as the sliders
increased, participants found it harder to reach the target image.

7.3 Task Completion Progress
To track how consistently the participants were able to progress
towards the target image, we looked at the LPIPS score of the inter-
mediate images generated by the participants as they progressed
in the task. As Figure 14 shows, AdaptiveSliders appears to have a
more consistent decrease in scores over time compared to the Base-
line. In a few cases, the baseline shows an initial upward variation,
notably in Tasks 2 and 7. Upon analyzing individual logs, we found
instances of users employing different initial approaches. One ap-
proach is when users engaged in exploratory behaviors where they
initially moved the sliders to extreme positions to understand the
available range. For the Baseline, this can result in absurd images
at the extremes, causing the sharp upward variations in LPIPS. Fig-
ure 20 shows such an instance for Task 7. Such variations are much
lower for AdaptiveSliders due to the adaptive bounds. Another
approach that users tried initially is to guess the target slider val-
ues directly without exploring the extremes. Figure 21 depicts this
behavior for Task 2 where the participant’s initial guesses deviated
quite a bit more from the target image in the Baseline compared
to AdaptiveSliders since the variation in AdaptiveSliders is more
predictable.

7.4 Slider Manipulations
We analyzed the number of times in a task participants manipulated
the sliders by clicking or dragging. The Wilcoxon signed-rank test
showed that participants performed a significantly lower number of
slider manipulations in AdaptiveSliders than in the Baseline for the
1-slider (𝑀𝐴𝑆 : 3.0, 𝑆𝐷𝐴𝑆 : 1.26, 𝑝 = 0.028, 𝑍 = −2.195, 𝑀𝐵 =

3.75, 𝑆𝐷𝐵 = 1.5) and 5-slider (𝑀𝐴𝑆 : 15.22, 𝑆𝐷𝐴𝑆 : 6.26, 𝑀𝐵 :
18.51, 𝑆𝐷𝐵 : 5.94, 𝑝 = 0.018, 𝑍 = −2.352) task complexities. No
significant differences were found for the 3-slider tasks (𝑀𝐴𝑆 :
8.47, 𝑆𝐷𝐴𝑆 : 3.54, 𝑝 = 0.375, 𝑍 = −0.886, 𝑀𝐵 = 9.5, 𝑆𝐷𝐵 = 4.22)
(Figure 11).

7.5 Cognitive Load
We conducted a Wilcoxon signed-rank test to analyze the effect
of AdaptiveSliders on the NASA-TLX scores. As shown in Fig-
ure 15, participants reported AdaptiveSliders to have significantly
lower mental demand (𝑝 = 0.006, 𝑍 = −2.738) and effort (𝑝 =

0.006, 𝑍 = −2.724). Participants echoed this sentiment in their inter-
views with P4 stating ""first one is more easy to adjust the image"."
Participants reported significantly higher frustration with Baseline
(𝑝 = 0.038, 𝑍 = −2.071). P12: "sometime the images generated sud-
denly are so bad and it took me for a while to think which made me
kinda demotivated". Further, participants felt more successful in ac-
complishing the task with AdaptiveSliders (𝑝 = 0.037, 𝑍 = −2.081),
suggesting that the tool is better aligned with their intentions and
helped them achieve their desired output better. P3: "the first in-
terface (AdaptiveSliders) is much fast and I think I completed all the
task in less time to the second one".

7.6 Subjective Scores on Specific Features
We collected subjective scores on the effectiveness of the UI fea-
tures as shown in Figure 16. Overall, the user felt the images gen-
erated were consistent and there were significantly less sudden
changes(Q1). P7: "second system is more precise when I change the
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Figure 14: Task Completion Progress. X-axis denotes the normalized task duration. Y-axis denotes the curves obtained by
extrapolating the points depicting the mean LPIPS scores of the intermediate images. Solid lines denote means, shaded regions
denote standard deviation. Task 4 and Task 5 also includes magnified image for showing enlarged view.

Figure 15: NASA-TLX Scores. Note, for Performance, Higher
is better (*) = (p < 0.05))

slider to change the attributes and the change is linear". It was easy to
determine how far to move the sliders to achieve the desired image
(Q4). P4: "When I saw the slider values in the history then it was
matching my expectation with the image in first (AdaptiveSliders).
Then I guess the number to reach the target. In second I had little clue
and was doing hit and trial." The user found that the baseline UI
images were generating absurd images at the extremes(Q2). P11:
"Intuitively I like to move slider to the extreme to identify the range
but it was pretty bad experience like winter case (winter slider) where
the human disappear) but second UI it (human in the image) was good
and understandable." AdaptiveSliders was generating images specif-
ically to other and restricting other parts to change as compared to
baseline (Q3). P2: "In the first system(baseline) changing one attribute
unexpected inference on other. Attributes are more independent in
the second system". However, two users pointed out that there is
some disentanglement in the semantic direction in AdaptiveSliders
which we discuss in section 8.2.

8 Discussion
In this section, we discuss the results of our study, offering key
insights and implications. Additionally, we discuss potential oppor-
tunities for future research.

8.1 Results Discussion: Impact of Consistent
Variation and Adaptive Slider Bounds

Our user study results indicate that AdaptiveSliders was successful
in reducing the total time taken and slider manipulations com-
pared to the Baseline which did not have consistent variation and
adaptive slider bounds. As we can see in the mean values, the dif-
ference between AdaptiveSliders and Baseline is highest in the
5-slider case indicating that with the higher complexity of manag-
ing multiple sliders, the impact of AdaptiveSliders becomes more
evident. Further, participants reported lower mental demand, effort,
and frustration with AdaptiveSliders. Participants also felt more
confident about their performance with AdaptiveSliders owing to
consistent variation and adaptive bounds enabling manipulations
that matched their expectations.

8.1.1 Interaction Progress and Overshooting. AdaptiveSliders ef-
fectively reduces the sharp initial overshooting observed in the
Baseline, which occurred due to both exploratory behavior and
initial guessing strategies. Similar exploratory behavior has been
noted in previous studies involving slider-based user interfaces[9].
In the Baseline condition, users struggled to understand how the
sliders affected the image, especially since they could move them to
extreme values, leading to sudden and unexpected changes. Adap-
tiveSliders helped by dynamically adjusting the slider limits, al-
lowing users to explore changes more smoothly without absurd
image generation. The system maintains interaction consistency by
restricting the bounds and consistent variations together ensuring
predictability and overall interaction quality. By limiting excessive
deviations and providing a structured editing experience, Adap-
tiveSliders improves both usability and precision in slider-based
image manipulation tasks.

8.1.2 Degree of Manipulation and Performance. In addition to the
number of sliders manipulated, the degree of manipulation deter-
mined by the perceptual difference (LPIPS) between the source and
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Figure 16: 7-point Likert scale questionnaire

target image may also affect task difficulty. An analysis of LPIPS
scores, time taken, and slider manipulations (Figure 17 and Fig-
ure 18) revealed that while there were no significant differences
for tasks with the same slider count, tasks with lower LPIPS scores
(Tasks 2, 5, and 7) tended to have a slightly higher number of
manipulations. Additionally, the performance gap between the pro-
gression of AdaptiveSliders and Baseline as shown in Figure 14
is biggest for these three tasks. We may therefore speculate that
the finer adjustments required initially by low LPIPS scores make
it more difficult for the user, especially in the Baseline condition
increasing the risk of overshooting and necessitating re-edits. The
issue with lower LPIPS scores seems to be present, but appears less
pronounced in AdaptiveSliders where the consistent variation and
adaptive bounds allow users to make a more steady, incremental
progress. However, a deeper study of usage behavior is needed to
conclusively establish the impact of the degree of manipulation.
Overall, our findings suggest that AdaptiveSliders consistently out-
performed the Baseline across all slider counts, regardless of task
difficulty. The advantage was particularly pronounced in tasks with
lower LPIPS scores, where users in the Baseline struggled with
fine-tuned adjustments. This suggests that adaptive constraints
play a crucial role in improving usability in slider-based interfaces,
particularly for precision-based tasks.

8.2 Entanglement and Effect of Editing Multiple
Attributes

While our approach tries to minimize the entanglement problem
by applying slider bounds beyond which other attributes start to
get impacted, this is a complex problem for editing T2I model
images. This becomes even more of an issue when dealing with
multiple attribute-edits at the same time. In Table 3, we observe
an increase in the distance between the target image and the final
user-generated image as the number of sliders increases, both in
the baseline and AdaptiveSliders conditions. Based on our study

Figure 17: Slider Manipulations Comparison with LPIPS

results and user feedback, users reported feeling overwhelmed
as more sliders were introduced. A key observation is that while
slider adjustments often align with the prompt, there is still some
degree of disentanglement between the latent space directions. This
issue becomes more pronounced as the number of sliders increases.
Despite using a state-of-the-art model for composing the sliders,
we still observed this disentanglement, which in turn made it more
difficult for users to achieve their final goal. The similar findings
were found in previous works [9, 41], where it was found that
too many adjustable dimensions can overwhelm users. Dang et
al.[9] specifically suggest that the optimal range is between 5 to
10 sliders. There is a growing body of work aimed at improving
the composability of semantic directions in LoRA[52, 57], and we
believe that with further research, composing multiple directions
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Figure 18: Time Performance Comparison with LPIPS

could become much more accurate, reducing the difficulty and
cognitive load on users.

8.3 Processing Time and Computation Cost
AdaptiveSliders includes multiple large machine learning compo-
nents such as Large Language Models (LLMs) [1], Vision-Language
Models (VLMs) [32], and Stable Diffusion [45] for generating and
manipulating images based on user input. While these models pro-
vide high-quality results, their computational demands pose chal-
lenges in enabling real time performance. We parallelized our code
in multiple places to minimize this latency.

8.3.1 Latency in Image Rendering . However, the LoRA-based im-
age generation for a new slider value still had a rendering latency
which is a result of several factors: 1) SDXL Model Size: The stable
diffusion model (SDXL) is large, requiring significant computa-
tional resources. 2) Multiple Sliders: Composing multiple sliders
adds complexity to the generation process. 3) Image Resolution:
Generating 512x512 pixel images demands more processing power.
The models inherently face a trade-off between speed and accu-
racy. Real-time image generation is possible, but it often comes at
the cost of reduced image quality. Alternative approaches to miti-
gate latency includes solutions such as reducing image resolution
(smaller images, e.g. for preview purposes) and utilizing multiple
higher-performance GPUs along with parallelization across those.
With a growing interest in the computer vision community for mak-
ing these models lightweight and real-time, we anticipate future
models will enable real-time rendering without significant quality
compromises or compute costs.

8.4 Baseline Slider Bounds
In our baseline condition, we used the slider range of -2 to 2. As we
explain in section 6.1.1, this decision was motivated by the fact that
our dataset of 100 image-attribute pairs showed that the sensible
bounds for most image-attribute pairs were within the -2, 2 range
and the -1, 1 range often failed to fully capture the spectrum of
a semantic attribute (Appendix A). Selecting a -1, 1 range for the

baseline would have meant that we could only consider target im-
ages that were also within this range since we want the participants
to be able to reach the target images successfully in the Baseline
as well. While this may have resulted in participants seeing less
absurd images in the Baseline, the task would have been severely
constrained with regards to the richness and range of the attributes
and a smaller LPIPS range. Further, this would not be representa-
tive of a real-world scenario where despite the possibility of absurd
images, one would want the user to have access to the whole spec-
trum if the fixed-range Baseline system is deployed. We therefore
considered the -2,2 range as more representative of a real-world
Baseline. While it may be worth investigating a smaller Baseline
range in the future, so as to observe how the user performance
varies as a result, in the end, the problem lies with the fixed nature
of the range in the Baseline and so any choice of range will have
imperfections.

8.5 Integration with Existing Methods
8.5.1 Integrating with Editing Tools. Multiple editing techniques
can enhance the overall quality of output generated by text to im-
age generation model[50]. Slider-based editing is a technique for
precise editing of continuous semantic attributes [7, 9]. It would be
highly valuable to explore integration of slider-based editing with
other complementary techniques, such as prompt-based editing,
inpainting, and outpainting. Combining these methods could pro-
vide users with a more flexible and comprehensive editing tool for
generating desired image.

8.5.2 Generalization of our Workflow to other T2I Models. The pro-
posed workflow in the paper primarily focuses on working with
diffusion models and utilizes input prompts provided by users to
generate and edit images via slider-based control of continuous
semantic attributes. While this approach is effective in manipu-
lating the latent space of diffusion models, it is essential to test
the workflow’s versatility and applicability with other text to im-
age generative models such as GANs (Generative Adversarial Net-
works)and VAEs (Variational Autoencoders). Testing with these
models would help determine the generalizability of the proposed
slider-based editing framework across different types of genera-
tive models, each with its own unique latent space structure and
generation mechanisms.

9 Conclusion
In this work, we presented AdaptiveSliders, a novel tool for editing
of semantic attributes in text-to-image generation models. Adap-
tiveSliders suggests relevant attributes for sliders based on the user
prompt. It uses a VQA-based approach to yield an initial image that
aligns better with the prompt in order to serve as the image at slider
value zero. It further uses VQA to provide adaptive slider bounds
that enable a sensible slider range for attribute exploration that is
not too big or too small. It uses an LPIPS-based approach to improve
consistency in how the images vary across the sliding range of an
attribute. We performed three validation experiments that showed
AdaptiveSliders clearly improved initial image alignment, slider
bounds, and consistent variation. Our user study demonstrated that
AdaptiveSliders significantly improves user efficiency and effort for
goal-based editing. We anticipate that our slider based interactive
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tool will open up novel opportunities in creating efficient tools
in creative image generation, and has applications across various
domains such as graphic design, AI-assisted creativity, and beyond.
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A Slider Bound Analysis
The distribution of slider bounds as shown in Figure 19, provides key insights into the range of values required to capture the semantic
variations. We analyze 100 prompt-attribute pair using AdaptiveSliders bound method. The graph highlights a significant concentration of
bounds from middle to end for both negative and positive values. To optimize usability and exploration of the design space, selecting a
baseline range of -2 to 2 mapped to -8 to 8 is a practical and efficient choice. It captures broader spectrum allowing user to explore semantic
attribute space.

Figure 19: Distribution of samples across different slider bounds from AdaptiveSliders. The x-axis represents the slider bounds
and y-axis indicates the number of samples corresponding to each bound. More than 80 samples are beyond 4 (weight 1).
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B Slider bounds using AdaptiveSliders

Table 4: Slider bounds by AdaptiveSliders for the attributes used in the study for all 9 tasks. The last column describes the
attributes used in the study along with slider bounds from AdaptiveSliders.

Task Initial Image Target Image Attributes (Bounds)

1 Age [-8, 7]

2 Seasonal Dress [-4, 7]

3 Muscular [-8,7]

4 Age [-4, 5], Smile [-8,8], Hair length [-
8,7]

5 Surprise [-8,8], Age[-8,7], Curly Hair[-
6,8]

6 Real Person [-7,8], Smile [-8,7], Tropical
Weather[-8,8]

7 Age [-8,8], Smile[-8,8], Hair length[-5,7],
Weather[-8,5], festive [-8,6]

8
Age [-4,6], Eye Size [-8,7], Hair Length [-
8,7], Winter Dress [-5,6], Dark Weather
(-5,5)

9
Smile [-8,7], Hair Length [-8,8], Seasonal
Dress [-6,7], Modern Dress ([-7,7], Pat-
tern Frequency [-4,8]
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C User Study results

Figure 20: Exploratory Behavior at the extremes: Comparison of a participant’s performance in Task 7 using AdaptiveSliders
(Top row) and Baseline (Bottom row). User starts with original image (Left most) and manipulates sliders to reconstruct target
image (Rightmost). Here, the user manipulates the sliders near their extremes (values not shown due to multiple sliders). While
the AdaptiveSliders images are still meaningful, those generated by baseline are absurd. Solid lines indicate consecutively
generated images, while dashed line implies that there were more intermediate slider manipulations to reach the target.

Figure 21: Directly guessing the target value behavior: Comparison of a participant’s performance in Task 2 usingAdaptiveSliders
(top row) and the Baseline method (bottom row). User starts with original image (Left most) and manipulates the Seasonal Dress
slider to reconstruct target image (Right most). The values below each image denote the exact slider values used to generate the
image by participants. Here, the user tries to guess the target value but gets an image that is highly different from the target
in the Baseline. The participant made more slider manipulations (5) to reach the target than AdaptiveSliders (3). Solid lines
indicate consecutively generated images, while dashed line implies that there were more intermediate slider manipulations to
reach the target.
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D Trained Sliders

Table 5: The Pretrained sliders used for our experiments and user study. The description for each slider provides the information
about how each slider changes the attributes

Sliders Description

Attributes

Age: change age of the person
Chubby: change the chubbyness of the person
Beard: add/remove the beard from the face

Hair length: change the hair length of the person
Hair curly: change the curlyness of the hair

Glasses slider: put the glasses on the person
Muscular: change the intensity of muscle on the person
Obese: change the intensity of obese in the person
Eye Size: change the eye size from bigger to small

Style

Pixar style: change the person to pixar style
Cartoon style: change the person to cartoon style
Clay style: change the person to clay style

Sculpture style: change the person to sculpture style
Anime style: change the person to anime style
Metal style: change the person to metal style

Emotions

Anger: change the intensity of the anger of the person
Surprise: change the intensity of the surprise of the person
Happy: change the intensity of the happiness of the person
Fear: change the intensity of the fear of the person

Disgust: change the intensity of the disgust of the person
Smile: change the intensity of the smile of the person

Background

Tropical: change the background to tropical
Weather: change the weather to snow
Night/Day: change the background to night or day

Chaotic Dark sky: change the background to chaotic dark sky

Fashion

Modern dress: changing the dress from old to modern dress
Formal dress: changing the dress from casual to formal dress
Seasonal dress: changing the dress from summer to winter dress

Increasing Pattern dress: changing the dress from plain to pattern dress
Emotive intensity sliders: change the intensity of the emotion of the person
Color variations clothing: change the color of the muted colors to vibrant colors
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Figure 22: Prompt to GPT for retrieving continuous sliders attribute from users prompt
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Figure 23: Prompt to GPT for mapping continuous sliders attribute from users prompt
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Figure 24: Prompt for GPT to filter the questions
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Figure 25: UI for experiment 2



AdaptiveSliders: User-aligned Semantic Slider-based Editing of Text-to-Image Model Output CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 26: UI for experiment 3
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