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ABSTRACT 
In this paper, we present Acustico, a passive acoustic sensing 
approach that enables tap detection and 2D tap localization 
on uninstrumented surfaces using a wrist-worn device. Our 
technique uses a novel application of acoustic time 
differences of arrival (TDOA) analysis. We adopt a sensor 
fusion approach by taking both “surface waves” (i.e., 
vibrations through surface) and “sound waves” (i.e., 
vibrations through air) into analysis to improve sensing 
resolution. We carefully design a sensor configuration to 
meet the constraints of a wristband form factor. We built a 
wristband prototype with four acoustic sensors, two 
accelerometers and two microphones. Through a 20-
participant study, we evaluated the performance of our 
proposed sensing technique for tap detection and 
localization. Results show that our system reliably detects 
taps with an F1-score of 0.9987 across different 
environmental noises and yields high localization accuracies 
with root-mean-square-errors of 7.6mm (X-axis) and 4.6mm 
(Y-axis) across different surfaces and tapping techniques. 
Author Keywords 
Passive Acoustic; Tap Detection and Localization; Wrist-
based Sensing; Time Differences of Arrival (TDOA) 
Analysis 
CCS Concepts
• Human-centered computing ~ Interaction devices 
INTRODUCTION 
As computing devices become increasingly ubiquitous, there 
is a pressing need for input technologies that can be always 
available [34]. While wearable devices like smartwatches 
and smartglasses enable always-available touch input, it 
comes at the cost of small physical size, which limits user’s 
input due to the fat finger problem [41]. One potential 
solution is to exploit the surfaces in the environment around 
us [18], which provide a large area for accurate and 
comfortable input. 
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Figure 1: Acustico detects and localizes taps on unmodified 
surfaces using wrist-worn accelerometers and microphones on 
the bottom. 

Prior work has investigated tracking touch input on 
unmodified surfaces. However, these efforts primarily use 
optical schemes with fixed cameras in the environment [2, 7, 
30] or wearable cameras [19, 47] that are expensive, power 
consuming and might draw privacy concerns [3, 22]. 
Another thread of research focuses on finger-worn ring 
devices that can track fingertips on the surface using 
accelerometers [27], optical flow sensor [50], and infrared 
sensors and gyroscope [26]. However, rings have power and 
individual sizing constraints that limit their practicality as 
consumer devices. Smartwatches, on the other hand, have 
increasingly become popular. But wrist-worn devices that 
can track touch input on uninstrumented surfaces have been 
largely overlooked in the literature. 

In this paper, we present Acustico, a passive acoustic sensing 
approach that enables tap detection and 2D tap localization 
on uninstrumented surfaces using a wrist-worn device. This 
is achieved using a novel application of acoustic time 
differences of arrival (TDOA) analysis. To overcome the 
challenges posed by the wristband form factor (e.g., sensors 
have to be close to each other), we adopt a sensor fusion 
approach by exploiting the propagation speed difference of 
“surface wave” (i.e., vibrations through surface) and “sound 
wave” (i.e., vibrations through air) to better estimate the 
TDOA and localize the tap (Figure 1). Through a careful 
design procedure, we come up with an optimal sensor 
configuration that meets wristband constraints and has better 
sensing performance. To validate the use of Acustico, we 
implemented a proof-of-concept wristband prototype with 
four acoustic sensors, two accelerometers and two 
microphones. We tested the system for tap detection and 2D 
tap localization. For tap detection, we evaluated the system 
under different types of environmental noise. For 2D tap 
localization, we evaluated the system on five different 
surface materials (wood, steel, plastic, glass and fabric), 

https://doi.org/10.1145/3379337.3415901
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using two tap methods (finger-pad or finger-nail) and two 
hand configurations (one-hand or two-hands). Results from 
20 participants show that our system can reliably detect taps 
under different noise conditions and achieve average error 
distances of 7.57mm (s.e. = 0.20mm) and 4.62mm (s.e. = 
0.11mm) in two axes across all different test conditions. 

Our primary contributions include: 1) a sensor fusion 
approach for wrist-worn devices to detect and localize taps 
using acoustic TDOA analysis; 2) design and development 
of a prototype using two different types of acoustic sensors 
and customized software; and 3) a validation of this approach 
through a series of experiments. 
RELATED WORK 
This work builds and extends on prior work in many areas, 
including touch input on surfaces, wrist-based gesture 
sensing, active sensing, and passive acoustic localization. 
Touch Input on Surfaces
Research on touch input on surfaces can be mainly divided 
into two categories, touch input on instrumented surfaces and 
touch input on uninstrumented surfaces.  

Touch Input on Instrumented Surfaces. Plenty of existing 
work supports touch sensing by instrumenting or modifying 
the surface with capacitive [29, 43, 59], optical [16, 32], 
electrical impedance [51, 55, 58] and acoustic sensors [36, 
37]. For example, Wall++ [59] uses conductive paint for 
patterning large electrodes onto a wall, turning ordinary 
walls into smart infrastructure supporting capacitive touch 
tracking. TouchLight [45] presents a touch screen display 
system on a sheet of acrylic plastic by instrumenting two 
video cameras behind the semi-transparent plane. Electrick 
[58] is a low-cost electrical impedance sensing technique 
enabling touch input on a surface painted with conductive 
coating. Since the surfaces always need to be instrumented 
or modified before sensing touch, these are not always 
practical. 

Touch Input on Uninstrumented Surfaces. Cameras in the 
environment or worn on user’s body allow sensing touch 
without instrumenting or modifying the surfaces. There are 
many existing optical schemes for touch sensing in the 
literature, including RGB cameras [2, 7, 25, 30], infrared 
cameras [1] and thermal cameras [39]. However, these 
approaches still require fixing the cameras in the 
environment or using wearable cameras [19, 47], which are 
expensive, power consuming and might introduce privacy 
issues [3, 22]. Aside from cameras, work has also been done 
to exploit a ring with IMU and light proximity sensor to sense 
touch [15] or track fingertip movements on uninstrumented 
surfaces [26]. None of the existing work uses wrist-based 
sensing. With the growing popularity of smartwatches, 
combined with their small touchscreen input space, enabling 
such surface input via wrist-based sensing holds a high 
potential for impact. 

Gesture Sensing using a Wristband / Smartwatch
Another body of related research focuses on sensing finger 
gestures (e.g., pinch) [14, 31, 40, 44] and hand gestures (e.g., 
fist) [9, 11, 23, 33, 38, 42, 56] using the sensors on a 
wristband or a smartwatch. For example, GestureWrist [38] 
uses capacitive sensors to detect the changes in forearm 
shape to infer hand postures. CapBand [42] uses a similar 
ultra-low power capacitive sensing technique but achieves 
significant improvements on accuracy and gesture quantity. 
WristFlex [9] and Tomo [56] use force resistors or electrical 
impedance tomography (EIT) sensors to identify different 
hand postures. WristWhirl [13] supports 2D continuous input 
from wrist whirling using infrared proximity sensors on the 
wristband. 
Localization using Active Sensing
Previous work has also shown the possibility to detect or 
localize a finger/finger-tap using active sensing methods, 
which use infrared [4], electrical [57, 60], magnetic [8] or 
acoustic signals [35, 54]. These approaches typically involve 
active transmission of a signal from a transmitter node and 
then analyzing the reception of that signal at the receiver 
node. FingerIO [35], for example, transforms the device into 
an active sonar system that transmits inaudible sound signals 
and tracks the echoes of the finger at its microphones. We 
investigated an active sensing approach, but there are 
fundamental constraints in the physics of this approach 
(detailed later in Discussion). 
Gesture Input and Localization with Passive Acoustics
Many passive acoustic approaches have been employed to 
detect gestures [12, 20, 21, 52] and localize signals [17, 24, 
36, 37, 48, 49]. For gesture inputs, SurfaceLink [12] exploits 
a combination of accelerometers and microphones to sense 
gestures and uses them to control information transfer among 
devices. ScratchInput [20] relies on the unique sound 
produced when a fingernail is dragged over different surfaces 
to identify six scratch gestures. 

The TDOA approach. For localizing the acoustic signal, the 
most prevalent approach, which we also use in this work, is 
time difference of arrival (TDOA) analysis [10, 24, 36, 37, 
48, 49]. For example, PingPongPlus [24] instruments four 
contact microphones located at the outermost corners of the 
desired interactive region. When a Ping-Pong ball falls inside 
of this region, the signal arrives to the four sensors at 
different times, enabling a hyperbolic intersection 
localization. Likewise, SurfaceVibe [36] also uses four 
geophones in a similar setup to enable two interaction types, 
tap and swipe, on multiple types of surfaces. Instead of 
instrumenting the surfaces, Toffee [48] augments the mobile 
devices and laptops with four piezo sensors and demonstrates 
accurate resolution of the bearings of touch events around the 
devices, although the evaluation considers only a single user. 
Besides TDOA analysis, SoundCraft [17] instead uses a 
target signal subspace method, by adopting the basic idea of 
Multiple Signal Classification technique, which can localize 
acoustic signals even in noisy environment. 



            
     

    
     

       
      
   

       
      

   
  

       
   

       
         

           
    

  
  

           
       
       
     
        
          
    
        

         
     

         
    
     

      

         
       

      
       

      
   

       
     

         
      

           
         
      

  
   

     
      

        
         
        
         

      

    
         

   
       
     

    
      

  
     

       
      

        
      
     

    
     
      

      
      
           

 
             

          
       

  
    

      
     

         
       
  

	 	  

       
     

	 	  

   
     

	 	  

          
        

         
        
           

      
  

Unlike the existing work, we are the first to embed two types 
of acoustic sensors in a wristband form factor to detect and 
localize finger-taps on uninstrumented surfaces. The 
wristband location and form-factor introduce two primary 
challenges: (1) Small distance between sensors: Due to the 
small form factor of the wristband, the distances between 
sensors are extremely small, which inherently requires a 
more precise estimate of TDOA; (2) Inconsistent coupling 
between sensors and surface: Since the accelerometers are 
embedded on the bottom of the wristband, the coupling 
between the accelerometers and surface highly depends on 
how users put their hands on the surface. Further, the 
accelerometer signals may also be affected by any hand 
movements right before tapping. Both introduce noises and 
instability in the received signals at the accelerometers. Our 
work overcomes these challenges and is the first work to our 
knowledge that detects and localizes taps on uninstrumented 
surfaces using wrist-based sensing. 
ACUSTICO: SENSING PRINCIPLE 
When a finger taps a table, the force applied to the surface 
causes deformation. As the contact point is relieved of the 
force, the surface retracts due to its elasticity, which 
generates vibrations propagating outward from the point of 
contact. On one hand, the vibration propagates through the 
surface, which we call the “surface wave”. The speed of the 
“surface wave” depends on the surface medium. In solid 
materials, such as wood, “surface wave” typically propagates 
at around 600 meters per second [24]. On the other hand, 
the vibrations also propagate through air, which we call the 
“sound wave”. The speed of the “sound wave” is relatively 
low, because air is compressible. In common indoor 
environments (20℃), the speed of the “sound wave” is about 
343 meters per second [46]. 

In this work, we take both “surface wave” and “sound wave” 
into consideration. To capture these two waves, our 
wristband prototype has four sensors underneath, two 
accelerometers for capturing the “surface wave” and two 
microphones for capturing the “sound wave” (see 
implementation details later). 

The sensor fusion approach is beneficial for both tap 
detection and tap localization. For tap detection, a tap is 
registered only when both waves are detected and pass a pre-
defined threshold, which prevents many false detections if 
we only use a single type of sensor. To be specific, if we only 
use microphones, the system might not be able to work under 
a noisy environment. And if we only consider the data from 
accelerometers, multiple false positives may be introduced 
due to random hand motion. 

For tap localization, we used the time differences of arrival 
(TDOA) between each pair of the sensors to interpolate the 
tap location. To help explain, let us first consider an example 
of two sensors of the same type. If a tap occurs equidistant to 
the two sensors, the time difference of arrival will be the 
same. And the system can conclude that the tap occurred 
along a line equidistant from the two sensors. If the tap is 

closer to one sensor than the other, the tap can be inferred to 
lie somewhere along a hyperbolic curve, a set of points 
having a constant difference of the distances to two fixed 
points (i.e., two sensor locations). With more sensors, the tap 
location can be determined by calculating the intersections 
of multiple hyperbolic curves. A similar approach is used in 
Toffee [48] and SurfaceVibe [36]. However, we are targeting 
a wristband device which has specific constraints as 
mentioned earlier. The distances between each pair of the 
sensors have to be small (in our case, we assume 4cm along 
the length of the wrist and 1.5cm along the width of the 
band). This makes the differences of TDOAs at different 
tapping locations extremely small (e.g., 1 - 30µs) and hard to 
detect. To overcome these issues, we calculate the TDOA 
between accelerometers and microphones. Since the 
propagation speeds in surface and air are different, this adds 
extra time differences by using the data from two different 
types of sensors. We further use a high sampling rate DAQ 
(data acquisition device) (1MHz) to increase the sampling 
rate so that we can capture such a small time difference. 

Figure 2: TDOAs from taps C and D are same for sensors A and 
B if they are both mics or both accelerometers, but different if 
one is mic and other is accelerometer. 

Let us consider a simplified example shown in Figure 2. We 
assume there are two taps (C, D) that are aligned with two 
sensors (A, B) on a wooden surface. The signals that are 
captured by Sensor A and Sensor B have propagation speeds 
of VA and VB respectively. Here, the time difference of 
arrival between Sensor A and Sensor B when tapping at C 
should be: 

�� 
− 
�� 

����! = �" �# 

Similarly, time difference of arrival between Sensor A and 
Sensor B when tapping at D should be: 

�� 
− 
�� 

����$ = � �#" 

Our goal is to maximize the difference between these two 
TDOAs so that the two taps can be easily distinguished: 

�������� (|����! − ����$|) 

If Sensor A and Sensor B are of the same type, then the 
propagation speeds VA and VB would be the same as well. 
The difference between the two TDOAs (both equal to 
AB/V) is zero. However, if Sensor A is an accelerometer and 
Sensor B is a microphone, then we have VA » 2VB (600m/s 
vs. 343m/s). In this case, the difference between two TDOAs 
is: 
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From this simplified example, we can see that extra time 
differences can be added by calculating the TDOA between 
accelerometer and microphone. And with larger time 
differences between two taps, the localization accuracy can 
be improved accordingly. 
SENSOR CONFIGURATION 
Now that we know we require the two sensor types, the next 
question is what should be the configuration of those sensors 
on the wristband. In this section, we discuss the pros and cons 
of different potential sensor configurations and provide the 
rationales of our final prototype design. 

We define the X-axis to be the wrist’s radial-ulnar and the Y 
axis to be the orthogonal direction (Figure 3). In theory, 
localization along X axis would always be easier than that 
along Y axis. To explain, let us consider another simple 
example about two taps along X axis (C, D, Figure 3(a)) and 
Y axis (E, F, Figure 3(b)) using two sensors of the same type 
(e.g., Sensor A and B are both microphones). 

Figure 3: (a) Two taps along X axis, (b) Two taps along Y axis. 

Assuming a signal propagation speed of V, the difference 
between the two TDOAs when tapping on C and D (X axis) 
and E and F (Y axis) should be respectively: 

− #! − #$ 
%
: − 9 "$X-axis: |����! − ����$| = | 9 "! 

% 
: |

% % 

− #& − #' 
%
: − 9 "' Y-axis: |����& − ����'| = | 9 "& 

%
: |

% % 

We assume the distance between Sensor A and B to be 4 cm 
(a common wrist length), the distance between Sensor A and 
Tap D to be 18cm (a common hand size), the distance 
between the two taps (C and D, E and F) to be 4cm, and the 
speed of sound to be 340m/s. Populating the equations with 
these numbers, we get the differences of two TDOAs along 
X axis and Y axis as 25.8µs and 3.6µs respectively. This is 
why X axis localization is easier than Y axis. A similar 
conclusion can also be found in Toffee [48] and SoundCraft 
[17] since both solutions only work in angular estimation 
(similar to X-axis) instead of distance interpolation (similar 
to Y-axis). 

Based on this fact, we chose to place two different types of 
sensors along Y axis to add the extra time difference. We 
decided to use four sensors in total (two for each type of 
sensor) to reduce the error with additional information [17, 
48]. With these constraints, we have three possible sensor 
configurations (Figure 4). 

Figure 4: Three possible sensor configurations given that two 
different types of sensors should lie along the Y-axis. The 
topmost configuration was chosen to keep mics closer to taps. 

Our initial tests showed that the signal to noise ratio (SNR) 
of the accelerometer is larger than the SNR of the 
microphones when tapping on the surface probably due to 
higher attenuation of the signals in air. We therefore chose 
the topmost setup as our final sensor configuration. After 
investigating the common wristband sizes, we used a 
rectangular configuration, where two microphones (or 
accelerometers) are separated by 4cm and distance between 
accelerometer and microphone is set to 1.5cm. 
HARDWARE IMPLEMENTATION 
Our wristband prototype consists of two highly sensitive 
accelerometers (Model 352A24, PCB Piezotronics) and two 
MEMS microphone breakouts (INMP401, Sparkfun) with 
built-in amplifiers (gain = 67dB). Four sensors are situated 
on the bottom of the wrist with a mechanical structure 
(Figure 5(a,b,c)). 

Figure 5: (a, b, c) Acustico wristband, (d) External hardware. 

The accelerometers were connected to an ICP signal 
conditioner (Model 482C24, PCB Piezotronics) with a gain 



          
          
   
    

      
      

 
       

      
           
      

       
       
 

            
    

    
       

     
     
  

        
      

      
       

       
     

     
        
         

    
       

        
     
         
       
      
         

        
          

       
       

    
 

           
     
    

  
        
          

    
       

    

     
          
       

         
    

           
   

  
    
     

      
  

   
        

         
        

      
      
      

     
         
          
       

     
         
       

        
           

     
 

          
     
 

   
       

        
  

       
       

       
       

  
     

  
   
  

      
     

      
       
          
       
         

    

of 10. Since the TDOAs we targeted are on the order of 
microseconds, we needed a sampling rate of at least 1MHz. 
We therefore used the PicoScope 2406B for sampling the 
amplified signals from both accelerometers and microphones 
and set its sampling rate to 1MHz with the raw data 
streaming into a desktop via USB. 
SOFTWARE IMPLEMENTATION 
Our software engine that detects and localizes taps was 
developed in Matlab. The software pipeline has two stages: 
First we detect whether there is a tap on the surface, and then 
we localize the tap using regression models. Our 
implementation utilizes the machine learning toolbox in 
Matlab. Once trained, our system can work in real time. 
Tap Detection
The basic premise here is to detect surface taps by looking at 
the peaks they cause in the accelerometer signal. The primary 
challenge here is in filtering out instances when the user 
moves their wrist randomly or purposely to position the 
finger over the target before tapping. We describe our 
algorithm below and test its tolerance to such instances in our 
evaluation. 

To detect a tap, we first slice the streaming data in 0.1s 
windows. Within each window, the raw data from four 
sensors are filtered by a bandpass filter with cut-off 
frequencies of 10Hz and 1000Hz [36]. We then sum up the 
data from the two accelerometers and the two microphones 
separately. For accelerometer data, in order to distinguish a 
tap from other coarse hand movements, we search for a 
“pulse” having a stronger signal power (i.e., sum of the 
squares for each data point) than a pre-set threshold within a 
short time period (i.e., 0.01s). We pick this time period based 
on our observation of the tap signal peak length and it is also 
long enough for us to ignore the small time shift between 
each pair of sensors. To implement this, we divide the data 
within the 0.1s window into 10 pieces and calculate the 
signal power for each piece. If the power of one piece is 
higher than the threshold, and the neighboring pieces show a 
much lower power (i.e., 30% of the selected piece), the 
accelerometer requirements are satisfied. Then we check the 
microphone signal power in the exact same 0.01s time slot. 
If it is also higher than the pre-set threshold, we assume there 
is a tap on the surface. The two thresholds for accelerometers 
and microphones are determined by a calibration process. 
Tap Localization
We localize taps relative to the location of the wristband in 
discrete regions. Aside from precise TDOA estimation, 
another challenge for tap localization is in the inconsistent 
coupling between the accelerometers and the surface. When 
the user wears the wristband, the coupling of the sensors to 
the surface may keep slightly varying due to the wrist motion 
even while the forearm stays in the same location. This 
inconsistency makes it difficult to reliably calculate TDOA 
simply using mathematical triangulation. 

Therefore, we chose to use a machine learning regression 
model to estimate the tap’s 2D coordinate. Before we extract 
features from the raw data, we first concatenate the data with 
the data from the previous window and the next window to 
ensure that a complete tap signal is captured, and the same 
signal is not captured twice. And then we trim the data into 
0.1 second by localizing the tap signal through maximum 
detection (i.e., only includes 0.03 second before the 
maximum of the data and 0.07 second after the maximum, a 
sufficient time slot ensuring the inclusion of a complete tap 
signal based on our observation). We use these data in 0.1s 
tap windows for feature extraction. 
Feature Extraction and Machine Learning 
Based on the findings from previous work [36, 48] and our 
initial tests, we use four different methods to estimate the 
TDOA between two signals in 0.1s tap windows: (1) time 
displacement when the cross-correlation (i.e., similarity of 
two signals as a function of the displacement of one relative 
to the other) reaches maximum; (2) time difference of the 
first peaks; (3) time difference of the maximum peaks; (4) 
time difference of minimum. In total, we feed a 24-feature 
vector (4 estimate methods × 6 pairs of sensors) into the 
machine learning model for localization. 

We use Random Forest in our current implementation. 
Random Forest has previously been found to be accurate, 
robust, scalable, and efficient in many different applications 
[6, 31]. We use two independent Random Forest regression 
models (nTrees = 200) which operate in parallel – one for X 
position and the other for Y position. 
USER EVALUATION 
We ran a user evaluation to characterize the robustness and 
accuracy of our system in tap detection and localization. 
Participants
Twenty right-handed participants (11 males, 9 females; 23-
59 years old, average age: 39.2) were recruited to participate 
in this study from our organization. The participants were 
compensated for their time. 

We marked the tap evaluation region (Figure 7, 8), which is 
a three by six grid (18 squares in total). Each square was a 
1cm × 1cm target for participants to tap, a reasonable target 
size considering the size of the finger-pad. This tap 
evaluation region was determined based on the comfortable 
area of interaction for index finger taps given the 
comfortable limits on flexion-extension and radial-ulnar 
deviation of the wrist on a surface. 
Experimental Setup
The study was conducted using our wristband prototype 
described in implementation section. It was conducted in a 
quiet room with the participant and experimenter. Except for 
the sofa arm condition, all experiments were completed on a 
large table with enough space to place each of the four stools 
made of different materials. The experimental interface was 
shown on a 27-inch monitor, placed on the same table at a 
comfortable distance from the participant. Prior to the 



  
     

      
        
     

      
     

   
         

      
       

       
          

        
     

         
  

      
       

     
    
        
         
   

    
     

    
          
      

 
         

        
   
        

      
      

        
       
        
       

      
      
    

     
        

 
  
  

           
  

        
         
         
     
     
     

       
        

        
         

        
    

      
     

  
    

    
  
          
     

       
  

        
           

   
    

           
         
         
         

 

 
    

        
    

        
        
          

    

 

evaluation, participants were asked to wear the prototype on 
the wrist of their left hand (non-dominant hand). In order to 
control for the effect of hand movements on the 
accelerometers (e.g., the closer to the wrist, the larger the 
influence), we required participants to put the wristband 
about 2cm away from the first knuckle of the wrist, a 
common position where users would wear a watch. We then 
asked the participants to place their wrist on the surface along 
the middle line of the tap region (Figure 8) such that they 
could use their index fingers to tap at each corner target 
easily and comfortably. We recorded that wrist position (i.e., 
14cm - 19cm to the evaluation region) and kept it the same 
throughout the duration of the study. Note that this is only to 
ensure the distances between taps and sensors are the same 
across sessions (e.g., training vs. testing). When being used 
in real time, the system does not require wrist or elbow to be 
fixed in one position. 
Evaluating Tap Detection under Noise & Wrist Motion
For tap detection, we tested if users’ taps can be reliably 
detected in noisy environments while the hand performs 
random wrist motion between taps. Participants tapped on a 
wooden stool surface under two different noise conditions. 
Before they started, the device needed a simple calibration 
process to capture appropriate thresholds for both 
accelerometers and microphones. For the calibration, 
participants were told to tap at four corners of the tap region 
once and we used the half amplitude of the “lightest” tap as 
the thresholds. Note that we did not give any instruction on 
how to tap in this study. 

Figure 6: User interface that guided the user. 

After the device was calibrated, a speaker was placed near 
the stool to play two different environmental noises, city 
traffic white noise1 and ambient noise2 at 80dB to simulate 
the acoustic noises the user may encounter in their daily 
activities [53]. Under each noise, participants were instructed 
to tap at the eighteen different target squares in a random 
order following the sequence shown on the experimental 
interface (Figure 6). To investigate the effect of hand 
movements on the accelerometers, we asked the participants 
to move their wrist randomly (left-right, up-down etc.) 
(without displacing their arm from its position on the 
surface) for about five seconds before they tapped. During 
the study, the experimenter manually recorded false positives 
and false negatives. The study took about 15 minutes to 

1 https://www.youtube.com/watch?v=8s5H76F3SIs 
2 https://www.youtube.com/watch?v=fuwGT88P-RU 

complete. In total, we had 720 taps (20 participants × 18 taps 
× 2 environmental noises). 
Results – Tap Detection under Noise & Wrist Motion 
We used F1 score to measure the accuracy of tap detection, 
which is defined as (2 × precision × recall) / (precision + 
recall). The F1 scores were analyzed using a one-way 
ANOVA. Violations to sphericity used Greenhouse-Geisser 
corrections to the degrees of freedom. 

Overall, the average F1 score for tap detection under two 
environmental noises is 0.9987 (s.e. = 0.0003) with precision 
of 0.9988 (s.e. = 0.0004) and recall of 0.9986 (s.e. = 0.0004). 
We found no significant effect of two environmental noises 
on F1 scores (F1, 19 = 0.998, p > 0.05). The tap detection 
results are promising since only 17 false positives and 20 
false negatives were found throughout the study, which 
demonstrates the robustness of tap detection algorithm under 
different noise conditions. 
Study Design – Tap Localization
For tap localization, we conducted the investigation in two 
phases. The first phase investigated tap localization on a 
wooden surface (which is one of the most common materials 
used for tables) under two independent variables: hand 
configuration and tap method. The second phase investigated 
taps on different surfaces. 

Phase 1 - Hand Configuration (One-Hand vs. Two-Hands): 
We wanted to isolate the effect of wrist motion on the 
accelerometers. Thus, we investigated a Two-Hands 
configuration where participants were asked to put their 
device-worn hand on the surface and use the other hand to 
tap (Figure 7(b)). Since the device-worn hand was kept still 
when the tap occurred, the accelerometers on the bottom 
were not affected by any hand movement but only captured 
the “surface wave” propagating from the tap location. 

Figure 7: (a) One-Hand, and (b) Two-Hands configuration. 

Phase 1 - Tap Method (Finger-pad vs. Finger-nail): We 
considered how users tapped on the surface when they 
tapped naturally (typically using the finger-pad) or when 
they purposely tried to incorporate the fingernail in the tap. 
Based on our initial observations, we found out that using 
fingernail to tap could create a “shorter but stronger” pulse 

https://www.youtube.com/watch?v=fuwGT88P-RU
https://www.youtube.com/watch?v=8s5H76F3SIs


        
     

        
       
     

     
        
          
        

        
        
          
  

 
           
     

        
       

    
         
       

          
        

     
            

    
    

          
    

  
  

      
      
       
        

     
     

       
 

  

       
       

       
        
     
       

    
             
       
         
   
   

        
      

        
       

      
   

       
       

     
   
        

 
         

         
      

     
   

         
      

       
     

        
    

        
       
        

         
       

        
        
    

 
   
        

        
        
        

        
    

       
  

with less frequency components, which might ease the 
TDOA estimation between each pair of sensors. 

Phase 2 - Surface Material: Since surfaces made of different 
materials have different properties and wave propagation 
velocities 3 , we investigated the localization accuracy on 
different surfaces. We tested on four additional surfaces 
which constitute common table surfaces - plastic, glass and 
steel, and a fabric sofa arm that represented a non-rigid 
surface (Figure 8). For this investigation, we only looked at 
the Finger-pad, One-Hand scenario to ensure that the entire 
study did not exceed 90 minutes. Including the data for the 
same scenario for Wood surface from Phase 1, we had five 
different surfaces. 

Figure 8: Five surface materials. (a) Wood, (b) Plastic, (c) Steel 
(painted), (d) Glass, (e) Fabric sofa arm. 

In summary, we had 2 tap methods (finger-pad vs. finger-
nail) × 2 hand configurations (one-hand vs. two-hands) = 4 
conditions in Phase 1, and 4 surface condition (plastic, glass, 
steel, fabric) in Phase 2. Each condition consisted of 18 tap 
locations (Figure 8). Participants did four repetition sessions 
in each of the four conditions in Phase 1 and in each of the 
four conditions in Phase 2. The conditions in Phase 1 and 
Phase 2 were separately counterbalanced. In total, we had 8 
conditions (4 Phase 1 + 4 Phase 2) × 18 taps × 4 sessions × 
20 participants = 11520 taps. 
Study Procedure – Tap Localization
For each test condition, the procedure was similar to the tap 
detection study. For each surface, participants were first 
asked to calibrate the device using the exact same process 
described in tap detection study. Unlike the detection study, 
no environmental noise was provided, and participants were 
not required to move their hands randomly before each tap. 
To save time, participants performed taps sequentially (i.e., 
from square 1 to 18) in each repetition session. When a 
participant’s tap was registered and recorded, there was a 
“click” sound to notify the participant to move to the next 
target. The experimental interface also highlighted the next 

3 https://www.engineeringtoolbox.com/sound-speed-solids-d_713.html 

tap target accordingly. To ensure we could collect all 
eighteen taps in each session for localization, if a tap was not 
detected, participants were instructed to tap at the same 
location again until it was registered. The experimenter 
recorded all false detections manually for later analysis. A 
one-minute break was given between repetition sessions 
where participants were asked to take off the wristband, 
leave the desk and walk around in the room [14, 28, 56]. Note 
that the calibration was only performed before the first 
session on each surface. The whole study took about 90 
minutes to complete. 
Results – Tap Localization
We present experiment results to demonstrate the accuracy 
and reliability of our system. Data were analyzed using a 
one-way ANOVA with respect to the five different surface 
different materials and a two-way repeated measures 
ANOVA with respect to tap methods (i.e., finger-pad or 
finger-nail) and hand configurations (i.e., one-hand or two-
hands) for the Wood surface. Violations to sphericity used 
Greenhouse-Geisser corrections to the degrees of freedom. 
Post-hoc tests with Bonferroni corrections were used. 
Tap Detection Performance 
We looked at the numbers of false positives and false 
negatives during the study and evaluated the tap detection 
performance. Overall, the average F1 score for tap detection 
is 0.9995 (s.e. = 3×10-5) with a precision of 0.9999 (s.e. = 
4×10-6) and recall of 0.9990 (s.e. = 6×10-5). There was only 
one false positive across the whole study. And 242 false 
negatives occurred in total because the participant tapped 
much lighter than the taps in the calibration process. The 
ANOVA yielded a significant effect of surface on F1 scores 
(F4, 76 = 7.793, p < 0.01). Post-hoc pair-wise comparisons 
revealed significant differences between sofa arm and all 
other rigid surfaces except for the wood surface (all p < 0.05), 
which indicated that although we achieved a F1 score as high 
as 0.9989 (s.e. = 1.6 ×10-4) for the sofa arm, it was still not 
as good as other rigid surfaces. There was also a significant 
effect of tap methods (F1, 19 = 5.589, p < 0.05) on F1-score. 
It showed that tapping with fingernail would be easier to 
detect since the received signals were “stronger and sharper”. 
We found no significant effect of hand configuration (F1, 19 = 
3.416, p > 0.05) which indicates that our tap detection 
algorithm minimized the effect of coarse hand movement on 
the accelerometers. 
Tap Localization Performance 
Since participants’ hand sizes were different, the tap region 
in the evaluation was actually in different distances from the 
sensors on the wristband (i.e., 14cm - 19cm) among 
participants. It meant that it was not possible to create a 
cross-user model that worked for everyone, especially also 
considering the differences in how participants tapped on the 
surface. Further, as discussed before, different materials have 
different dispersion/reflection properties and wave 

https://www.engineeringtoolbox.com/sound-speed-solids-d_713.html


     
      

        
     
        

   
     

       
       

       
     

       
   

            
        
        
      

          
      

 
          
      
        
         

  

         
          

       
   

            
        

        
       
        
       

         
    

       
       

     
          

        
      

       
 

     
       
     

     
            

       
         

     
      

          
      
      

        
        

     
       

      
    

     
      

 
         

       
     

      
         
       

   
       

       
 
       

    
      

    
       

  

          
        

       
       
     
      
      

propagation velocities, making it hard for the model to be 
generalized across different surfaces. 

Thus, we chose to evaluate the tap localization accuracy 
within each test condition using root-mean-square error 
(RMSE) measurement. The error was measured from the 
center of each target. We calculated the leave-one-session-
out accuracy for each participant under each test condition 
by training a model using the data from three sessions and 
testing it using the remaining session. The average RMSE for 
each participant in each test condition was calculated by 
averaging all 4 possible combinations of training and test 
data. The overall accuracy was then averaged using the 
RMSEs from all participants. 

Overall, the average RMSEs in X axis and Y axis across all 
eight tested conditions were 7.57mm (s.e. = 0.20mm) and 
4.62mm (s.e. = 0.11mm) respectively. In particular, if we 
removed sofa arm condition, the average RMSEs decreased 
to 7.08mm (s.e. = 0.19mm) and 4.36mm (s.e. = 0.11mm) in 
X axis and Y axis (Figure 9 left). 

Figure 9: Tap localization RMSEs for X and Y-axis for all 
conditions and when the non-rigid fabric surface is excluded 
(left); Tap localization RMSEs across all surfaces under the 
Finger-pad, One-Hand scenario (right). Error bars show ± SE 
in all figures. 

Surface. A significant effect of surface was found on the 
RMSEs for the X axis (F4, 76 = 15.088, p < 0.01) and the Y 
axis (F4, 76 = 20.307, p < 0.01) both. Post-hoc pair-wise 
comparisons revealed significant differences between sofa 
arm and other rigid surfaces (all p < 0.05) in both X axis and 
Y axis. The respective average RMSEs in X and Y axis were: 
Wood: 7.30mm (s.e. = 0.50mm), 4.54mm (s.e. = 0.30mm); 
Steel: 6.47mm (s.e. = 0.46mm), 4.17mm (s.e. = 0.25mm); 
Glass: 7.57mm (s.e. = 0.54mm), 4.71mm (s.e. = 0.21mm); 
Plastic: 8.44mm (s.e. = 0.43mm), 5.34mm (s.e. = 0.17mm); 
Sofa Arm: 10.98mm (s.e. = 0.44mm), 6.49mm (s.e. = 
0.13mm) (Figure 9 right). 

It was expected that we achieved the lowest accuracy on the 
sofa arm since “surface wave” propagation is more 
complicated in the non-rigid surface. Our system performed 
the best on steel surface. The reason might be two folds. 
Firstly, the steel surface is homogeneous, which reduces the 
dispersion/reflection of the “surface wave”. Second, taps on 
the steel surface create the strongest “sound wave” among 
these five materials. 

Tap methods and hand configurations. On the wood 
surface, for X axis, we found a significant effect of hand 
configurations (F1, 19 = 9.105, p < 0.01). However, no 
significant effect was found for tap methods (F1, 19 = 2.734, 
p > 0.05). As for Y axis, we found significant effects of tap 
methods (F1, 19 = 5.659, p < 0.05) and hand configurations 
(F1, 19 = 7.645, p < 0.05) both. We found no significant 
interaction effect for tap methods × hand configurations in 
both X axis and Y axis (both p > 0.05). 

The average RMSEs in X axis and Y axis when tapping using 
finger-pad were 7.06mm (s.e. = 0.35mm) and 4.31mm (s.e. 
= 0.23mm) respectively while they dropped to 6.49mm (s.e. 
= 0.36mm) and 3.83mm (s.e. = 0.21mm) when using the 
fingernail to tap (Figure 10 left). Based on the results, for X 
axis location interpolation, using fingernail did not help but 
it did help Y axis location interpolation. One possible reason 
could be that tapping with fingernail improved the TDOA 
estimation between two different types of sensors (i.e., 
accelerometer and microphone) since the received signals 
from both types of sensors have clearer and stronger peaks. 

Figure 10: On the wood surface: Tap localization RMSEs for 
Finger-pad vs. Finger-nail (left); Tap localization RMSEs for 
One-Hand vs. Two-Hands configurations (right). 

For hand configurations, the average RMSEs in X axis and 
Y axis in the one-hand condition were 7.30mm (s.e. = 
0.37mm) and 4.36mm (s.e. = 0.20mm) respectively. In the 
two-hands condition, the RMSEs could decrease to 6.25mm 
(s.e. = 0.32mm) and 3.78mm (s.e. = 0.23mm) 
correspondingly (Figure 10 right). From the results, we 
demonstrated that the tap localization performance could be 
further improved in two-hands configuration since the effect 
of hand coarse movements on the accelerometers was 
completely removed in this situation. With this, we also 
envision a two-hands usage scenario, which can support 
applications that might require higher sensing resolution and 
accuracy. 

Feature Importance. Aside from the accuracy, we were also 
interested in which features played more important roles in 
localization. A weighted breakdown of merit was calculated 
using normalized Random Forest weights. First of all, in 
order to see which TDOA estimation method performed 
better in our configuration, we summed up the normalized 
weights of six TDOA features calculated by each method and 



      
        
    
      

      
      

         
     

        
          

        
       

         
      

       
  

 
        

     
 

         
       

     
        

        
    

           
        
       

        
       

           
        

      
        

  
  

    
       
     
     

   
      

          
          

      
       

       
    

       
        

  
   

 
          

         
       

     
       

        
 

           
  

    
        

          
   

 

averaged them from both axis (Figure 11 top). It turned out 
that TDOAs calculated using “the time displacement when 
the cross-correlation reaches maximum”, contributed the 
most for tap localization. This might be because only this 
estimation method considered the complete signals from the 
four sensors. Second, we compared the TDOA features from 
each pair of the sensors in X axis and Y axis by summing up 
the corresponding weights from four TDOA estimation 
methods (Figure 11 bottom). As expected, the two TDOAs 
calculated from the sensors of the same type (Acc1 – Acc2, 
Mic1 – Mic2) were more important for X axis localization, 
validating our discussion earlier. For Y axis localization, the 
TDOAs from different types of sensors (Acc - Mic) proved 
more important, which again validates our idea of using the 
propagation speeds difference in surface and air to add extra 
time difference and improve the sensing resolution. 

Figure 11: Feature importance for tap localization among the 
four TDOA estimation methods (top), and the six sensor pairs 
(bottom). 

With Less Training Data. We also analyzed the system 
accuracy with less training data. We still took leave-one-
session-out approach but this time we only used the taps from 
four corners in three sessions (i.e., 12 taps) to train the 
machine learning model. And we tested the model on the 
remaining sessions (i.e., 18 taps). 

Overall, with less training data, the average RMSEs in X axis 
and Y axis across all eight tested conditions increased to 
9.64mm (s.e. = 0.18mm) and 5.79mm (s.e. = 0.08mm) 
respectively. If we removed sofa arm condition, the average 
RMSEs could decrease to 9.16mm (s.e. = 0.16mm) and 

5.63mm (s.e. = 0.08mm) in X axis and Y axis. These results 
showed that our system could still achieve a reasonable 
localization accuracy with a small set of training data. The 
amount of collected training data should depend on different 
application requirements. 
EXAMPLE APPLICATIONS 
We built four demo applications to showcase the potential 
use cases of Acustico. The first three applications show how 
Acustico can be used with AR devices (e.g., Microsoft 
HoloLens) to enrich the input expressiveness. The last 
application provides a coherent “mouse experience” by 
combining Acustico with an optical flow sensor. 

AR Applications: The first application we built is a dial pad 
for AR devices. User can simply tap at different locations to 
enter a phone number and call the person he wants to contact 
(Figure 12(a)). Similarly, we also developed a calculator for 
AR devices. User can input the numbers on any surfaces 
nearby and get the calculation results (Figure 12(b)). Our 
third application is a whack-a-mole AR game. User can hit 
moles by taping on the surface, which offers an immersive 
gaming experience with corresponding haptic tactile 
feedback (Figure 12(c)). 

Figure 12: Demo applications. (a) Dial pad, (b) Calculator, (c) 
Whack-a-mole game, (d) Acustico with an optical flow sensor, 
(e) User taps on the right side to “right click”. 

Optical Flow + Acustico for Surface-wide Localization: 
Acustico focuses on tap localization relative to the wristband. 
We combine the Acustico with an optical flow sensor 
underneath to additionally track the forearm motion on the 
surface. This combination can be used to expand any of the 
applications demonstrated above to support tap localization 
over larger surface-wide AR interfaces. We further 
implement a mouse experience (Figure 12(e)) where the user 
simply moves his or her wrist to control the pointer position 
and taps on left/right region with respect to the wristband to 
invoke left/right click. 



 
        

   

        
    

        
       

     
      

        
         

        
          
      

          
         

      
      

       
      

  
       

       

      
          

     
     

       
     

   
  

     
    

       
        

        
       

     
     

       
      

   
     

       
    

      

     
        
       

    
          
            

      
        

    
        

       
     

   
        
     
           

   
         

  
       

     
       

        
     
          
     

    
       

    

        
        

     
      

    
        

      
        

       
  

       
  

     
     
     

     
 

 
        

        
      

        
      

     
      

     
 

      
      
   

       
     
     

DISCUSSION AND LIMITATIONS 
In this section, we discuss the insights gained from this work, 
and present limitations and future work. 

Active Acoustic Approach. As discussed in Related Work, 
active acoustic approach also shows potential to localize a 
finger [35, 54]. Based on the existing work, we also initially 
investigated the idea of embedding both transducer (e.g., 
speaker, actuator) and receiver (e.g., microphone, 
accelerometer) on the wristband, and tried to localize the 
finger using reflected signal. However, as also mentioned in 
FingerIO [35], we found out that it was hard to completely 
isolate the transducer and receiver within a small wristband 
form factor. The received signal would be largely masked by 
the emitted signal from the transducer, making it hard to 
separate and extract the reflected signal. One possible way to 
solve the masking problem is to increase the frequency of the 
emitted signal. To test this, we built a prototype using an 
ultrasound emitter. However, this presents another problem 
– signal attenuation. High frequency signals attenuate very 
quickly and therefore the received signals do not have 
enough SNR to make any reasonable inferences. The set-up 
therefore needed more power and coupling liquids which 
make the approach untenable for practical use. 

Tap Detection and Localization in Real-World Settings. For 
the tap detection, we did not evaluate the system when the 
hand is not on a surface, but vibration and sound signals are 
still detected (e.g., user’s hand hits an object or user is 
walking). This is because we assume the system is aware of 
the user’s hand being placed on a surface, which could be 
easily achieved using a proximity sensor. However, our 
threshold-based method still needs to be tested more 
intensively in the field. Another research direction would be 
exploring the effect of environmental noises on tap 
localization. While we envision Acustico to be most useful 
in indoor scenarios where the noises are limited, we are 
interested to quantify the lowest SNR for the system to work. 
Furthermore, it is also interesting to look into how surface 
properties (e.g., thickness/flatness) would affect system 
performance. We leave these for future work. 

Ecological Validity. Acustico focuses on tap detection and 
localization under the situation that the user’s wrist is being 
placed on a surface. Although we did not receive any 
negative feedback from participants, we understand that this 
requirement might introduce fatigue and be uncomfortable 
after long time use. Future research should be conducted in 
ecological validity of this approach. 

Re-calibration/Retrain for New Surfaces. Since surfaces 
made of different materials have different properties and 
wave propagation velocities, our system needs to be re-
calibrated and retrained for any new surfaces that it has not 
seen before. However, we show in the evaluation that we can 
make the training set as small as 12 taps to achieve a 
reasonable localization accuracy (X: 9.64mm error, Y: 
5.79mm error). Another possible solution is to train on the 

surfaces around the user beforehand and load the specific 
model when the user needs to interact on that surface. 

Practicality. The system we presented is an early-stage 
proof-of-concept research prototype. Although it is in a 
constrained wristband form factor similar to current wrist 
wearables in the market, more work is still needed to 
incorporate these sensors into a flexible and stretchable 
wristband. One direction to pursue in this regard is to only 
place the accelerometers under the wristband in direct 
contact with the surface and place the microphones on the 
top (in the watch-face) since they rely on in-air propagation. 
This may introduce certain inconsistencies in the sensor 
distances which could impact accuracies. Moreover, to 
capture the small TDOAs, we sampled the data in 1MHz, 
which is not supported in most of current wrist wearable 
devices due to their limited computational resources and 
batteries. But we believe this is not impossible as technology 
advances (e.g., ADS8330 from TI can sample at 1MHz and 
only consume 21mW). Plenty of engineering efforts would 
be necessary to fully embed this technique into commercial 
wrist wearable devices. 

System Evaluation. We evaluated the system using a region-
based approach since Acustico mainly focuses on discrete tap 
detection and localization. We plan to investigate how to use 
this technique to facilitate continuous position tracking or 
gesture-based sensing in our future work. To ensure the 
studies can be completed in 90 minutes, participants were 
asked to perform taps sequentially in each session, which 
might reduce the wrist movement between taps. Evaluation 
in random tap locations might need to be included in the 
future. 

Finger-up Detection. The mouse demo enables clicking on 
targets. However, Acustico only detects the finger-down 
event which produces the acoustic waves but not the finger-
up event since it does not produce any acoustic waves. The 
detection of this release event will enable a dragging state in 
the mouse [5] and is an interesting challenge for wrist-based 
sensing. 
CONCLUSION 
This paper presents a passive acoustic sensing approach for 
wrist-worn devices to detect and localize tap. We discuss the 
sensing principle and our investigation on different sensor 
configurations. We built a wristband prototype with four 
acoustic sensors including two accelerometers and two 
microphones. Through a 20-participant study, we 
demonstrate that our system can reliably detect taps with an 
F1-score of 0.9987 across different environmental noises and 
yield high localization accuracies with root-mean-square-
errors of 7.6mm (X-axis) and 4.6mm (Y-axis) across 
different surfaces and tapping techniques. Our work presents 
a novel sensing methodology for always-available input on 
any unmodified surface. We believe it holds the potential to 
further enrich the input expressiveness of today’s computing 
devices (e.g., wearables and AR devices). 



 
   

     
       

   
   

 
      

       
 

    
   
    

 
        

 
     
  

 
         

    
       
      

   
  
       

      
   

   
       

       
    

     
     

    
 
  

       
         

      
 

  
  
          

    
     

 
   

  
        

    
      

       
  

  

      
      
    

       
     

        
     

 
  

  
         

   
       

     
  

 
  

          
  
      

       
   

 
         

      
   

     
    

 
  

         
    

     
       
       
  
  

  
       

 
        

     
 

  
        

      
      

       
    

  
  

      
   

 
        

     

REFERENCES 
[1] Hideki Koike, Yoichi Sato, Yoshinori Kobayashi. 

2001. Integrating paper and digital information on 
EnhancedDesk: a method for realtime finger tracking 
on an augmented desk system. ACM Trans. Comput.-
Hum. Interact., 8 (4). 307–322. 
DOI=https://doi.org/10.1145/504704.504706 

[2] Ankur Agarwal, Shahram Izadi, Manmohan 
Chandraker and Andrew Blake. 2007. High Precision 
Multi-touch Sensing on Surfaces using Overhead 
Cameras. In Second Annual IEEE International 
Workshop on Horizontal Interactive Human-
Computer Systems (TABLETOP'07), 197-200. 
DOI=https://doi.org/10.1109/TABLETOP.2007.29 

[3] Michael Boyle and Saul Greenberg. 2005. The 
language of privacy: Learning from video media 
space analysis and design. ACM Trans. Comput.-
Hum. Interact., 12 (2). 328-370. 
DOI=https://doi.org/10.1145/1067860.1067868 

[4] Alex Butler, Shahram Izadi and Steve Hodges. 2008. 
SideSight: multi-"touch" interaction around small 
devices. In Proceedings of the 21st annual ACM 
symposium on User interface software and technology 
(UIST ’08). 201-204. 
DOI=https://doi.org/10.1145/1449715.1449746 

[5] William Buxton. 1990. A three-state model of 
graphical input. In Proceedings of the IFIP TC13 
Third Interational Conference on Human-Computer 
Interaction (INTERACT ’90), 449–456. 

[6] Liwei Chan, Yi-Ling Chen, Chi-Hao Hsieh, Rong-
Hao Liang and Bing-Yu Chen. 2015. CyclopsRing: 
Enabling Whole-Hand and Context-Aware 
Interactions Through a Fisheye Ring. In Proceedings 
of the 28th Annual ACM Symposium on User 
Interface Software and Technology (UIST'15), 549-
556. 
DOI= https://doi.org/10.1145/2807442.2807450 

[7] Jae Sik Chang, Eun Yi Kim, KeeChul Jung and Hang 
Joon Kim. 2005. Real time hand tracking based on 
active contour model. In Proceedings of the 2005 
international conference on Computational Science 
and Its Applications. 999. 
DOI=https://doi.org/10.1007/11424925_104 

[8] Ke-Yu Chen, Shwetak N. Patel and Sean Keller. 
2016. Finexus: Tracking Precise Motions of Multiple 
Fingertips Using Magnetic Sensing. In Proceedings of 
the 2016 CHI Conference on Human Factors in 
Computing Systems (CHI'16), 1504–1514. 
DOI=http://dx.doi.org/10.1145/2858036.2858125 

[9] Artem Dementyev and Joseph A. Paradiso. 2014. 
WristFlex: low-power gesture input with wrist-worn 
pressure sensors. In Proceedings of the 27th annual 
ACM symposium on User interface software and 
technology (UIST'14), 161-166. 
DOI=https://doi.org/10.1145/2642918.2647396 

[10] Fabrice Devige and Jean-Pierre Nikolovski. 2003. 
Accurate Interactive Acoustic Plate. US Patent 
Application No. US2003/0066692 A1. 

[11] Rui Fukui, Masahiko Watanabe, Tomoaki Gyota, 
Masamichi Shimosaka and Tomomasa Sato. 2011. 
Hand shape classification with a wrist contour sensor: 
development of a prototype device. In Proceedings of 
the 13th international conference on Ubiquitous 
computing (Ubicomp'11), 311-314. 
DOI=https://doi.org/10.1145/2030112.2030154 

[12] Mayank Goel, Brendan Lee, Md. Tanvir Islam Aumi, 
Shwetak Patel, Gaetano Borriello, Stacie Hibino and 
Bo Begole. 2014. SurfaceLink: using inertial and 
acoustic sensing to enable multi-device interaction on 
a surface. In Proceedings of the SIGCHI Conference 
on Human Factors in Computing Systems (CHI'14), 
1387–1396. 
DOI=https://doi.org/10.1145/2556288.2557120 

[13] Jun Gong, Xing-Dong Yang and Pourang Irani. 2016. 
WristWhirl: One-handed Continuous Smartwatch 
Input using Wrist Gestures. In Proceedings of the 29th 
Annual ACM Symposium on User Interface Software 
and Technology (UIST'16). 
DOI=http://dx.doi.org/10.1145/2984511.2984563 

[14] Jun Gong, Yang Zhang, Xia Zhou and Xing-Dong 
Yang. 2017. Pyro: Thumb-Tip Gesture Recognition 
Using Pyroelectric Infrared Sensing. In Proceedings 
of the 30th Annual ACM Symposium on User 
Interface Software and Technology (UIST'17), 553-
563. 
DOI=https://doi.org/10.1145/3126594.3126615 

[15] Yizheng Gu, Chun Yu, Zhipeng Li, Weiqi Li, 
Shuchang Xu, Xiaoying Wei and Yuanchun Shi. 
2019. Accurate and Low-Latency Sensing of Touch 
Contact on Any Surface with Finger-Worn IMU 
Sensor. In Proceedings of the 32nd Annual ACM 
Symposium on User Interface Software and 
Technology (UIST'19), 1059–1070. 
DOI=https://doi.org/10.1145/3332165.3347947 

[16] Jefferson Y. Han. 2005. Low-cost multi-touch sensing 
through frustrated total internal reflection. In 
Proceedings of the 18th annual ACM symposium on 
User interface software and technology (UIST'05), 
115–118. 
DOI=https://doi.org/10.1145/1095034.1095054 

[17] Teng Han, Khalad Hasan, Keisuke Nakamura, Randy 
Gomez and Pourang Irani. 2017. SoundCraft: 
Enabling Spatial Interactions on Smartwatches using 
Hand Generated Acoustics. In Proceedings of the 30th 
Annual ACM Symposium on User Interface Software 
and Technology (UIST'17), 579–591. 
DOI=https://doi.org/10.1145/3126594.3126612 

[18] Chris Harrison. 2010. Appropriated Interaction 
Surfaces. Computer, 43 (6). 86-89. 
DOI=https://doi.org/110.1109/MC.2010.158 

[19] Chris Harrison, Hrvoje Benko, and Andrew D. 
Wilson. 2011. OmniTouch: wearable multitouch 

https://DOI=https://doi.org/110.1109/MC.2010.158
https://DOI=https://doi.org/10.1145/3126594.3126612
https://DOI=https://doi.org/10.1145/1095034.1095054
https://DOI=https://doi.org/10.1145/3332165.3347947
https://DOI=https://doi.org/10.1145/3126594.3126615
https://DOI=http://dx.doi.org/10.1145/2984511.2984563
https://DOI=https://doi.org/10.1145/2556288.2557120
https://DOI=https://doi.org/10.1145/2030112.2030154
https://DOI=https://doi.org/10.1145/2642918.2647396
https://DOI=http://dx.doi.org/10.1145/2858036.2858125
https://DOI=https://doi.org/10.1007/11424925_104
https://doi.org/10.1145/2807442.2807450
https://DOI=https://doi.org/10.1145/1449715.1449746
https://DOI=https://doi.org/10.1145/1067860.1067868
https://DOI=https://doi.org/10.1109/TABLETOP.2007.29
https://DOI=https://doi.org/10.1145/504704.504706


     
    

    
  

         
 

        
 

      
  

           
      

       
     

  
       

 
 

       
    
 

  
       

       
     

      
       
 

  
        

       
  

      
  
  

  
      

       
     

  
        

  
 

  
        

   
        

     
 

  
              

     
   

     
  

 

          
    
   
        

    
 

  
         

  
   

 
      

 
        

     
 

 
       

   
       

      
     

  
       

        
       

       
  

  
       

    
      

       
  

 
  

           
     

     
  

 
       

   
      

     
     

  
        

          
         

    
    
      

   
        

       

interaction everywhere. In Proceedings of the 24th 
annual ACM symposium on User interface software 
and technology (UIST ’11), 441-450. 
DOI=https://doi.org/10.1145/2047196.2047255 

[20] Chris Harrison and Scott E. Hudson. 2008. Scratch 
input: creating large, inexpensive, unpowered and 
mobile finger input surfaces. In Proceedings of the 
21th annual ACM symposium on User interface 
software and technology (UIST ’08), 205-208. 
DOI=https://doi.org/10.1145/1449715.1449747 

[21] Chris Harrison, Desney S. Tan and Dan Morris. 2010. 
Skinput: appropriating the body as an input surface. In 
Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (CHI ’10), 453-462. 
DOI=https://doi.org/10.1145/1753326.1753394 

[22] Scott E. Hudson and Ian Smith. 1996. Techniques for 
addressing fundamental privacy and disruption 
tradeoffs in awareness support systems. In 
Proceedings of the 1996 ACM conference on 
Computer supported cooperative work (CSCW'96), 
248–257. 
DOI=https://doi.org/10.1145/240080.240295 

[23] Yasha Iravantchi, Yang Zhang, Evi Bernitsas, 
Mayank Goel and Chris Harrison. 2019. Interferi: 
Gesture Sensing using On-Body Acoustic 
Interferometry. In Proceedings of the 2019 CHI 
Conference on Human Factors in Computing Systems 
(CHI'19), 276. 
DOI=https://doi.org/10.1145/3290605.3300506 

[24] Hiroshi Ishii, Craig Wisneski, Julian Orbanes, Ben 
Chun and Joe Paradiso. 1999. PingPongPlus: design 
of an athletic-tangible interface for computer-
supported cooperative play. In Proceedings of the 
SIGCHI conference on Human Factors in Computing 
Systems (CHI'99), 394–401. 
DOI=https://doi.org/10.1145/302979.303115 

[25] Shaun K. Kane, Daniel Avrahami, Jacob O. 
Wobbrock, Beverly Harrison, Adam D. Rea, Matthai 
Philipose and Anthony LaMarca. 2009. Bonfire: a 
nomadic system for hybrid laptop-tabletop interaction. 
In Proceedings of the 22nd annual ACM symposium 
on User interface software and technology (UIST'09), 
129–138. 
DOI=https://doi.org/10.1145/1622176.1622202 

[26] Wolf Kienzle and Ken Hinckley. 2014. LightRing: 
always-available 2D input on any surface. In 
Proceedings of the 27th annual ACM symposium on 
User interface software and technology (UIST'14), 
157-160. 
DOI=https://doi.org/10.1145/2642918.2647376 

[27] A. H. F. Lam, W. J. Li, Liu Yunhui and Xi Ning. 
2002. MIDS: micro input devices system using 
MEMS sensors. In IEEE/RSJ International 
Conference on Intelligent Robots and Systems, 1184-
1189 vol.1182. 
DOI=https://doi.org/10.1109/IRDS.2002.1043893 

[28] Gierad Laput, Robert Xiao and Chris Harrison. 2016. 
ViBand: High-Fidelity Bio-Acoustic Sensing Using 
Commodity Smartwatch Accelerometers. In 
Proceedings of the 29th Annual Symposium on User 
Interface Software and Technology (UIST'16), 321-
333. 
DOI=https://doi.org/10.1145/2984511.2984582 

[29] SK Lee, William Buxton and K. C. Smith. 1985. A 
multi-touch three dimensional touch-sensitive tablet. 
SIGCHI Bull., 16 (4). 21–25. 
DOI=https://doi.org/10.1145/1165385.317461 

[30] Julien Letessier and François Bérard. 2004. Visual 
tracking of bare fingers for interactive surfaces. In 
Proceedings of the 17th annual ACM symposium on 
User interface software and technology (UIST'04), 
119–122. 
DOI=https://doi.org/10.1145/1029632.1029652 

[31] Jaime Lien, Nicholas Gillian, M. Emre Karagozler, 
Patrick Amihood, Carsten Schwesig, Erik Olson, 
Hakim Raja and Ivan Poupyrev. 2016. Soli: 
Ubiquitous Gesture Sensing with Millimeter Wave 
Radar. In ACM Trans. Graph (SIGGRAPH'16), 10. 
DOI=https://doi.org/10.1145/2897824.2925953 

[32] Nobuyuki Matsushita and Jun Rekimoto. 1997. 
HoloWall: designing a finger, hand, body, and object 
sensitive wall. In Proceedings of the 10th annual 
ACM symposium on User interface software and 
technology (UIST'97), 209–210. 
DOI=https://doi.org/10.1145/263407.263549 

[33] Jess McIntosh, Asier Marzo and Mike Fraser. 2017. 
SensIR: Detecting Hand Gestures with a Wearable 
Bracelet using Infrared Transmission and Reflection. 
In Proceedings of the 30th Annual ACM Symposium 
on User Interface Software and Technology 
(UIST'17), 593-597. 
DOI=https://doi.org/10.1145/3126594.3126604 

[34] Dan Morris, T. Scott Saponas and Desney Tan. 2011. 
Emerging Input Technologies for Always-Available 
Mobile Interaction. Found. Trends Hum.-Comput. 
Interact., 4 (4). 245–316. 
DOI=https://doi.org/10.1561/1100000023 

[35] Rajalakshmi Nandakumar, Vikram Iyer, Desney Tan 
and Shyamnath Gollakota. 2016. FingerIO: Using 
Active Sonar for Fine-Grained Finger Tracking. In 
Proceedings of the 2016 CHI Conference on Human 
Factors in Computing Systems (CHI'16), 1515-1525. 
DOI=https://doi.org/10.1145/2858036.2858580 

[36] Shijia Pan, Ceferino G. Ramirez, Mostafa Mirshekari, 
Jonathon Fagert, Albert J. Chung, Chih C. Hu, John P. 
Shen, Hae Y. Noh and Pei Zhang. 2017. SurfaceVibe: 
Vibration-Based Tap and Swipe Tracking on 
Ubiquitous Surfaces. In 16th ACM/IEEE International 
Conference on Information Processing in Sensor 
Networks (IPSN'17), 197-208. 

[37] J. A. Paradiso, Leo Che King, N. Checka and Hsiao 
Kaijen. 2002. Passive acoustic sensing for tracking 

https://DOI=https://doi.org/10.1145/2858036.2858580
https://DOI=https://doi.org/10.1561/1100000023
https://DOI=https://doi.org/10.1145/3126594.3126604
https://DOI=https://doi.org/10.1145/263407.263549
https://DOI=https://doi.org/10.1145/2897824.2925953
https://DOI=https://doi.org/10.1145/1029632.1029652
https://DOI=https://doi.org/10.1145/1165385.317461
https://DOI=https://doi.org/10.1145/2984511.2984582
https://DOI=https://doi.org/10.1109/IRDS.2002.1043893
https://DOI=https://doi.org/10.1145/2642918.2647376
https://DOI=https://doi.org/10.1145/1622176.1622202
https://DOI=https://doi.org/10.1145/302979.303115
https://DOI=https://doi.org/10.1145/3290605.3300506
https://DOI=https://doi.org/10.1145/240080.240295
https://DOI=https://doi.org/10.1145/1753326.1753394
https://DOI=https://doi.org/10.1145/1449715.1449747
https://DOI=https://doi.org/10.1145/2047196.2047255


   
  

 
       

 
      

  
  

            
   

     
    
     

 
 

       
        

  
      

    
  

  
          

        
     

  
  

  
        

        
       

    
   

       
    

 
  

          
      

 
  

 
  

 
          

   
     

  
   

  
       

        
   

  

           
        
   

 
         

     
       

  
 

 
        

       
     

     
       

   
  

  
      

     
    

 
        

     
     
      

    
   

  
     

      
      
  

      
       

  
 

       
        
      
      
  

  
  

   
       

         
     

     
   

  
       

      
         
     

      
    

knocks atop large interactive displays. In SENSORS, 
2002 IEEE, 521-527 vol.521. 
DOI=https://doi.org/10.1109/ICSENS.2002.1037150 

[38] Jun Rekimoto. 2001. GestureWrist and GesturePad: 
Unobtrusive Wearable Interaction Devices. In 
Proceedings of the 5th IEEE International Symposium 
on Wearable Computers (ISWC'01), 21. 
DOI=https://doi.org/10.1109/ISWC.2001.962092 

[39] Elliot N. Saba, Eric C. Larson and Shwetak N. Patel. 
2012. Dante vision: In-air and touch gesture sensing 
for natural surface interaction with combined depth 
and thermal cameras. In 2012 IEEE International 
Conference on Emerging Signal Processing 
Applications, 167-170. 
DOI=https://doi.org/10.1109/ESPA.2012.6152472 

[40] T. Scott Saponas, Desney S. Tan, Dan Morris, Ravin 
Balakrishnan, Jim Turner and James A. Landay. 2009. 
Enabling always-available input with muscle-
computer interfaces. In Proceedings of the 22nd 
annual ACM symposium on User interface software 
and technology (UIST'09), 167-176. 
DOI=https://doi.org/10.1145/1622176.1622208 

[41] Katie A. Siek, Yvonne Rogers and Kay H. Connelly. 
2005. Fat finger worries: how older and younger users 
physically interact with PDAs. In Proceedings of the 
2005 IFIP TC13 international conference on Human-
Computer Interaction, 267-280. 
DOI=https://doi.org/10.1007/11555261_24 

[42] Hoang Truong, Shuo Zhang, Ufuk Muncuk, Phuc 
Nguyen, Nam Bui, Anh Nguyen, Qin Lv, Kaushik 
Chowdhury, Thang Dinh and Tam Vu. 2018. 
CapBand: Battery-free Successive Capacitance 
Sensing Wristband for Hand Gesture Recognition. In 
Proceedings of the 16th ACM Conference on 
Embedded Networked Sensor Systems (SenSys'18), 
54–67. 
DOI=https://doi.org/10.1145/3274783.3274854 

[43] Dong Wei, Steven Z. Zhou and Du Xie. 2010. 
MTMR: A conceptual interior design framework 
integrating Mixed Reality with the Multi-Touch 
tabletop interface. In 2010 IEEE International 
Symposium on Mixed and Augmented Reality, 279-
280. 
DOI=https://doi.org/10.1109/ISMAR.2010.5643606 

[44] Hongyi Wen, Julian Ramos Rojas and Anind K. Dey. 
2016. Serendipity: Finger Gesture Recognition using 
an Off-the-Shelf Smartwatch. In Proceedings of the 
2016 CHI Conference on Human Factors in 
Computing Systems (CHI'16), 3847–3851. 
DOI=https://doi.org/10.1145/2858036.2858466 

[45] Andrew D. Wilson. 2004. TouchLight: an imaging 
touch screen and display for gesture-based interaction. 
In Proceedings of the 6th international conference on 
Multimodal interfaces (ICMI'04), 69–76. 
DOI=https://doi.org/10.1145/1027933.1027946 

[46] George S. K. Wong. 1986. Speed of sound in standard 
air. The Journal of the Acoustical Society of America, 
79 (5). 1359-1366. 
DOI=https://doi.org/10.1121/1.393664 

[47] Robert Xiao, Julia Schwarz, Nick Throm, Andrew D. 
Wilson and Hrvoje Benko. 2018. MRTouch: Adding 
Touch Input to Head-Mounted Mixed Reality. IEEE 
Transactions on Visualization and Computer 
Graphics, 24 (4). 1653-1660. 
DOI=https://doi.org/10.1109/TVCG.2018.2794222 

[48] Robert Xiao, Greg Lew, James Marsanico, Divya 
Hariharan, Scott Hudson and Chris Harrison. 2014. 
Toffee: enabling ad hoc, around-device interaction 
with acoustic time-of-arrival correlation. In 
Proceedings of the 16th international conference on 
Human-computer interaction with mobile devices and 
services (MobileHCI'14), 67-76. 
DOI=https://doi.org/10.1145/2628363.2628383 

[49] Ming Yang. 2011. In-Solid Acoustic Source 
Localization Using Likelihood Mapping Algorithm. 
Open Journal of Acoustics, 1. 34-40. 
DOI=https://doi.org/10.4236/oja.2011.12005 

[50] Xing-Dong Yang, Tovi Grossman, Daniel Wigdor and 
George Fitzmaurice. 2012. Magic Finger: Always-
Available Input through Finger Instrumentation. In 
Proceedings of the 25nd annual ACM symposium on 
User interface software and technology (UIST'12), 
147 - 156. 
DOI=https://doi.org/10.1145/2380116.2380137 

[51] Sang Ho Yoon, Ke Huo, Yunbo Zhang, Guiming 
Chen, Luis Paredes, Subramanian Chidambaram and 
Karthik Ramani. 2017. iSoft: A Customizable Soft 
Sensor with Real-time Continuous Contact and 
Stretching Sensing. In Proceedings of the 30th Annual 
ACM Symposium on User Interface Software and 
Technology (UIST'17), 665-678. 
DOI=https://doi.org/10.1145/3126594.3126654 

[52] Cheng Zhang, AbdelKareem Bedri, Gabriel Reyes, 
Bailey Bercik, Omer T. Inan, Thad E. Starner and 
Gregory D. Abowd. 2016. TapSkin: Recognizing On-
Skin Input for Smartwatches. In Proceedings of the 
2016 ACM International Conference on Interactive 
Surfaces and Spaces, 13–22. 
DOI=https://doi.org/10.1145/2992154.2992187 

[53] Cheng Zhang, Anandghan Waghmare, Pranav 
Kundra, Yiming Pu, Scott Gilliland, Thomas Ploetz, 
Thad E. Starner, Omer T. Inan and Gregory D. 
Abowd. 2017. FingerSound: Recognizing unistroke 
thumb gestures using a ring. In Proc. ACM Interact. 
Mob. Wearable Ubiquitous Technol., 1 (3). Article 
DOI=https://doi.org/120. 10.1145/3130985 

[54] Cheng Zhang, Qiuyue Xue, Anandghan Waghmare, 
Sumeet Jain, Yiming Pu, Sinan Hersek, Kent Lyons, 
Kenneth A. Cunefare, Omer T. Inan and Gregory D. 
Abowd. 2017. SoundTrak: Continuous 3D Tracking 
of a Finger Using Active Acoustics. In Proc. ACM 
Interact. Mob. Wearable Ubiquitous 

https://DOI=https://doi.org/120
https://DOI=https://doi.org/10.1145/2992154.2992187
https://DOI=https://doi.org/10.1145/3126594.3126654
https://DOI=https://doi.org/10.1145/2380116.2380137
https://DOI=https://doi.org/10.4236/oja.2011.12005
https://DOI=https://doi.org/10.1145/2628363.2628383
https://DOI=https://doi.org/10.1109/TVCG.2018.2794222
https://DOI=https://doi.org/10.1121/1.393664
https://DOI=https://doi.org/10.1145/1027933.1027946
https://DOI=https://doi.org/10.1145/2858036.2858466
https://DOI=https://doi.org/10.1109/ISMAR.2010.5643606
https://DOI=https://doi.org/10.1145/3274783.3274854
https://DOI=https://doi.org/10.1007/11555261_24
https://DOI=https://doi.org/10.1145/1622176.1622208
https://DOI=https://doi.org/10.1109/ESPA.2012.6152472
https://DOI=https://doi.org/10.1109/ISWC.2001.962092
https://DOI=https://doi.org/10.1109/ICSENS.2002.1037150


 
        

      
        

     
  

        
    
     
        

     
 

  
          

       
     

       
  
   

  

         
      

      
       
 

  
        

       
   

        
     

  
         

        
      

      
       

 
  
 

 

DOI=https://doi.org/10.1145/3090095 
[55] Yang Zhang and Chris Harrison. 2018. Pulp 

Nonfiction: Low-Cost Touch Tracking for Paper. In 
Proceedings of the 2018 CHI Conference on Human 
Factors in Computing Systems (CHI'18), 1-11. 
DOI=https://doi.org/10.1145/3173574.3173691 

[56] Yang Zhang and Chris Harrison. 2015. Tomo: 
Wearable, Low-Cost Electrical Impedance 
Tomography for Hand Gesture Recognition. In 
Proceedings of the 28th Annual ACM Symposium on 
User Interface Software and Technology (UIST'15), 
167-173. 
DOI=https://doi.org/10.1145/2807442.2807480 

[57] Yang Zhang, Wolf Kienzle, Yanjun Ma, Shiu S. Ng, 
Hrvoje Benko and Chris Harrison. 2019. ActiTouch: 
Robust Touch Detection for On-Skin AR/VR 
Interfaces. In Proceedings of the 32nd Annual ACM 
Symposium on User Interface Software and 
Technology (UIST'19), 1151–1159. 
DOI=https://doi.org/10.1145/3332165.3347869 

[58] Yang Zhang, Gierad Laput and Chris Harrison. 2017. 
Electrick: Low-Cost Touch Sensing Using Electric 
Field Tomography. In Proceedings of the 2017 CHI 
Conference on Human Factors in Computing Systems 
(CHI'17), 1-14. 
DOI=https://doi.org/10.1145/3025453.3025842 

[59] Yang Zhang, Chouchang Yang, Scott E. Hudson, 
Chris Harrison and Alanson Sample. 2018. Wall++: 
Room-Scale Interactive and Context-Aware Sensing. 
In Proceedings of the 2018 CHI Conference on 
Human Factors in Computing Systems, 273. 
DOI=https://doi.org/10.1145/3173574.3173847 

[60] Yang Zhang, Junhan Zhou, Gierad Laput and Chris 
Harrison. 2016. SkinTrack: Using the Body as an 
Electrical Waveguide for Continuous Finger Tracking 
on the Skin. In Proceedings of the 2016 CHI 
Conference on Human Factors in Computing Systems 
(CHI'16), 1491-1503. 
DOI=https://doi.org/10.1145/2858036.2858082 

https://DOI=https://doi.org/10.1145/2858036.2858082
https://DOI=https://doi.org/10.1145/3173574.3173847
https://DOI=https://doi.org/10.1145/3025453.3025842
https://DOI=https://doi.org/10.1145/3332165.3347869
https://DOI=https://doi.org/10.1145/2807442.2807480
https://DOI=https://doi.org/10.1145/3173574.3173691
https://DOI=https://doi.org/10.1145/3090095



